Solve for x
x=-\frac{2}{3}\approx -0.666666667
Graph
Share
Copied to clipboard
1=xx+x\times 2-\left(x^{2}-4x-5\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
1=x^{2}+x\times 2-\left(x^{2}-4x-5\right)
Multiply x and x to get x^{2}.
1=x^{2}+x\times 2-x^{2}+4x+5
To find the opposite of x^{2}-4x-5, find the opposite of each term.
1=x\times 2+4x+5
Combine x^{2} and -x^{2} to get 0.
1=6x+5
Combine x\times 2 and 4x to get 6x.
6x+5=1
Swap sides so that all variable terms are on the left hand side.
6x=1-5
Subtract 5 from both sides.
6x=-4
Subtract 5 from 1 to get -4.
x=\frac{-4}{6}
Divide both sides by 6.
x=-\frac{2}{3}
Reduce the fraction \frac{-4}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}