Solve for x
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
\left(x+1\right)^{2}x\left(x-1\right)+x^{2}\left(x^{2}-x-1\right)=\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+\left(x+1\right)x\left(x^{2}-x+1\right)
Variable x cannot be equal to any of the values -1,0,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)x^{2}\left(x+1\right)^{2}, the least common multiple of x,x^{3}+x^{2}-x-1,x^{2},x^{3}-x.
\left(x^{2}+2x+1\right)x\left(x-1\right)+x^{2}\left(x^{2}-x-1\right)=\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+\left(x+1\right)x\left(x^{2}-x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\left(x^{3}+2x^{2}+x\right)\left(x-1\right)+x^{2}\left(x^{2}-x-1\right)=\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+\left(x+1\right)x\left(x^{2}-x+1\right)
Use the distributive property to multiply x^{2}+2x+1 by x.
x^{4}+x^{3}-x^{2}-x+x^{2}\left(x^{2}-x-1\right)=\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+\left(x+1\right)x\left(x^{2}-x+1\right)
Use the distributive property to multiply x^{3}+2x^{2}+x by x-1 and combine like terms.
x^{4}+x^{3}-x^{2}-x+x^{4}-x^{3}-x^{2}=\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+\left(x+1\right)x\left(x^{2}-x+1\right)
Use the distributive property to multiply x^{2} by x^{2}-x-1.
2x^{4}+x^{3}-x^{2}-x-x^{3}-x^{2}=\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+\left(x+1\right)x\left(x^{2}-x+1\right)
Combine x^{4} and x^{4} to get 2x^{4}.
2x^{4}-x^{2}-x-x^{2}=\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+\left(x+1\right)x\left(x^{2}-x+1\right)
Combine x^{3} and -x^{3} to get 0.
2x^{4}-2x^{2}-x=\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+\left(x+1\right)x\left(x^{2}-x+1\right)
Combine -x^{2} and -x^{2} to get -2x^{2}.
2x^{4}-2x^{2}-x=\left(x+1\right)^{2}\left(x-1\right)^{2}+\left(x+1\right)x\left(x^{2}-x+1\right)
Multiply x-1 and x-1 to get \left(x-1\right)^{2}.
2x^{4}-2x^{2}-x=\left(x^{2}+2x+1\right)\left(x-1\right)^{2}+\left(x+1\right)x\left(x^{2}-x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x^{4}-2x^{2}-x=\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)+\left(x+1\right)x\left(x^{2}-x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{4}-2x^{2}-x=x^{4}-2x^{2}+1+\left(x+1\right)x\left(x^{2}-x+1\right)
Use the distributive property to multiply x^{2}+2x+1 by x^{2}-2x+1 and combine like terms.
2x^{4}-2x^{2}-x=x^{4}-2x^{2}+1+\left(x^{2}+x\right)\left(x^{2}-x+1\right)
Use the distributive property to multiply x+1 by x.
2x^{4}-2x^{2}-x=x^{4}-2x^{2}+1+x^{4}+x
Use the distributive property to multiply x^{2}+x by x^{2}-x+1 and combine like terms.
2x^{4}-2x^{2}-x=2x^{4}-2x^{2}+1+x
Combine x^{4} and x^{4} to get 2x^{4}.
2x^{4}-2x^{2}-x-2x^{4}=-2x^{2}+1+x
Subtract 2x^{4} from both sides.
-2x^{2}-x=-2x^{2}+1+x
Combine 2x^{4} and -2x^{4} to get 0.
-2x^{2}-x+2x^{2}=1+x
Add 2x^{2} to both sides.
-x=1+x
Combine -2x^{2} and 2x^{2} to get 0.
-x-x=1
Subtract x from both sides.
-2x=1
Combine -x and -x to get -2x.
x=\frac{1}{-2}
Divide both sides by -2.
x=-\frac{1}{2}
Fraction \frac{1}{-2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}