Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

76x-3952+76x=x\left(x-52\right)
Variable x cannot be equal to any of the values 0,52 since division by zero is not defined. Multiply both sides of the equation by 76x\left(x-52\right), the least common multiple of x,x-52,76.
152x-3952=x\left(x-52\right)
Combine 76x and 76x to get 152x.
152x-3952=x^{2}-52x
Use the distributive property to multiply x by x-52.
152x-3952-x^{2}=-52x
Subtract x^{2} from both sides.
152x-3952-x^{2}+52x=0
Add 52x to both sides.
204x-3952-x^{2}=0
Combine 152x and 52x to get 204x.
-x^{2}+204x-3952=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-204±\sqrt{204^{2}-4\left(-1\right)\left(-3952\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 204 for b, and -3952 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-204±\sqrt{41616-4\left(-1\right)\left(-3952\right)}}{2\left(-1\right)}
Square 204.
x=\frac{-204±\sqrt{41616+4\left(-3952\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-204±\sqrt{41616-15808}}{2\left(-1\right)}
Multiply 4 times -3952.
x=\frac{-204±\sqrt{25808}}{2\left(-1\right)}
Add 41616 to -15808.
x=\frac{-204±4\sqrt{1613}}{2\left(-1\right)}
Take the square root of 25808.
x=\frac{-204±4\sqrt{1613}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{1613}-204}{-2}
Now solve the equation x=\frac{-204±4\sqrt{1613}}{-2} when ± is plus. Add -204 to 4\sqrt{1613}.
x=102-2\sqrt{1613}
Divide -204+4\sqrt{1613} by -2.
x=\frac{-4\sqrt{1613}-204}{-2}
Now solve the equation x=\frac{-204±4\sqrt{1613}}{-2} when ± is minus. Subtract 4\sqrt{1613} from -204.
x=2\sqrt{1613}+102
Divide -204-4\sqrt{1613} by -2.
x=102-2\sqrt{1613} x=2\sqrt{1613}+102
The equation is now solved.
76x-3952+76x=x\left(x-52\right)
Variable x cannot be equal to any of the values 0,52 since division by zero is not defined. Multiply both sides of the equation by 76x\left(x-52\right), the least common multiple of x,x-52,76.
152x-3952=x\left(x-52\right)
Combine 76x and 76x to get 152x.
152x-3952=x^{2}-52x
Use the distributive property to multiply x by x-52.
152x-3952-x^{2}=-52x
Subtract x^{2} from both sides.
152x-3952-x^{2}+52x=0
Add 52x to both sides.
204x-3952-x^{2}=0
Combine 152x and 52x to get 204x.
204x-x^{2}=3952
Add 3952 to both sides. Anything plus zero gives itself.
-x^{2}+204x=3952
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+204x}{-1}=\frac{3952}{-1}
Divide both sides by -1.
x^{2}+\frac{204}{-1}x=\frac{3952}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-204x=\frac{3952}{-1}
Divide 204 by -1.
x^{2}-204x=-3952
Divide 3952 by -1.
x^{2}-204x+\left(-102\right)^{2}=-3952+\left(-102\right)^{2}
Divide -204, the coefficient of the x term, by 2 to get -102. Then add the square of -102 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-204x+10404=-3952+10404
Square -102.
x^{2}-204x+10404=6452
Add -3952 to 10404.
\left(x-102\right)^{2}=6452
Factor x^{2}-204x+10404. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-102\right)^{2}}=\sqrt{6452}
Take the square root of both sides of the equation.
x-102=2\sqrt{1613} x-102=-2\sqrt{1613}
Simplify.
x=2\sqrt{1613}+102 x=102-2\sqrt{1613}
Add 102 to both sides of the equation.