Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x-250+25x=2x\left(x-10\right)
Variable x cannot be equal to any of the values 0,10 since division by zero is not defined. Multiply both sides of the equation by 25x\left(x-10\right), the least common multiple of x,x-10,25.
50x-250=2x\left(x-10\right)
Combine 25x and 25x to get 50x.
50x-250=2x^{2}-20x
Use the distributive property to multiply 2x by x-10.
50x-250-2x^{2}=-20x
Subtract 2x^{2} from both sides.
50x-250-2x^{2}+20x=0
Add 20x to both sides.
70x-250-2x^{2}=0
Combine 50x and 20x to get 70x.
-2x^{2}+70x-250=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-70±\sqrt{70^{2}-4\left(-2\right)\left(-250\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 70 for b, and -250 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-70±\sqrt{4900-4\left(-2\right)\left(-250\right)}}{2\left(-2\right)}
Square 70.
x=\frac{-70±\sqrt{4900+8\left(-250\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-70±\sqrt{4900-2000}}{2\left(-2\right)}
Multiply 8 times -250.
x=\frac{-70±\sqrt{2900}}{2\left(-2\right)}
Add 4900 to -2000.
x=\frac{-70±10\sqrt{29}}{2\left(-2\right)}
Take the square root of 2900.
x=\frac{-70±10\sqrt{29}}{-4}
Multiply 2 times -2.
x=\frac{10\sqrt{29}-70}{-4}
Now solve the equation x=\frac{-70±10\sqrt{29}}{-4} when ± is plus. Add -70 to 10\sqrt{29}.
x=\frac{35-5\sqrt{29}}{2}
Divide -70+10\sqrt{29} by -4.
x=\frac{-10\sqrt{29}-70}{-4}
Now solve the equation x=\frac{-70±10\sqrt{29}}{-4} when ± is minus. Subtract 10\sqrt{29} from -70.
x=\frac{5\sqrt{29}+35}{2}
Divide -70-10\sqrt{29} by -4.
x=\frac{35-5\sqrt{29}}{2} x=\frac{5\sqrt{29}+35}{2}
The equation is now solved.
25x-250+25x=2x\left(x-10\right)
Variable x cannot be equal to any of the values 0,10 since division by zero is not defined. Multiply both sides of the equation by 25x\left(x-10\right), the least common multiple of x,x-10,25.
50x-250=2x\left(x-10\right)
Combine 25x and 25x to get 50x.
50x-250=2x^{2}-20x
Use the distributive property to multiply 2x by x-10.
50x-250-2x^{2}=-20x
Subtract 2x^{2} from both sides.
50x-250-2x^{2}+20x=0
Add 20x to both sides.
70x-250-2x^{2}=0
Combine 50x and 20x to get 70x.
70x-2x^{2}=250
Add 250 to both sides. Anything plus zero gives itself.
-2x^{2}+70x=250
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+70x}{-2}=\frac{250}{-2}
Divide both sides by -2.
x^{2}+\frac{70}{-2}x=\frac{250}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-35x=\frac{250}{-2}
Divide 70 by -2.
x^{2}-35x=-125
Divide 250 by -2.
x^{2}-35x+\left(-\frac{35}{2}\right)^{2}=-125+\left(-\frac{35}{2}\right)^{2}
Divide -35, the coefficient of the x term, by 2 to get -\frac{35}{2}. Then add the square of -\frac{35}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-35x+\frac{1225}{4}=-125+\frac{1225}{4}
Square -\frac{35}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-35x+\frac{1225}{4}=\frac{725}{4}
Add -125 to \frac{1225}{4}.
\left(x-\frac{35}{2}\right)^{2}=\frac{725}{4}
Factor x^{2}-35x+\frac{1225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{2}\right)^{2}}=\sqrt{\frac{725}{4}}
Take the square root of both sides of the equation.
x-\frac{35}{2}=\frac{5\sqrt{29}}{2} x-\frac{35}{2}=-\frac{5\sqrt{29}}{2}
Simplify.
x=\frac{5\sqrt{29}+35}{2} x=\frac{35-5\sqrt{29}}{2}
Add \frac{35}{2} to both sides of the equation.