Solve for x
x=\sqrt{13}+1\approx 4.605551275
x=1-\sqrt{13}\approx -2.605551275
Graph
Share
Copied to clipboard
3x+12+3x=x\left(x+4\right)
Variable x cannot be equal to any of the values -4,0 since division by zero is not defined. Multiply both sides of the equation by 3x\left(x+4\right), the least common multiple of x,x+4,3.
6x+12=x\left(x+4\right)
Combine 3x and 3x to get 6x.
6x+12=x^{2}+4x
Use the distributive property to multiply x by x+4.
6x+12-x^{2}=4x
Subtract x^{2} from both sides.
6x+12-x^{2}-4x=0
Subtract 4x from both sides.
2x+12-x^{2}=0
Combine 6x and -4x to get 2x.
-x^{2}+2x+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 12}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 2 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 12}}{2\left(-1\right)}
Square 2.
x=\frac{-2±\sqrt{4+4\times 12}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-2±\sqrt{4+48}}{2\left(-1\right)}
Multiply 4 times 12.
x=\frac{-2±\sqrt{52}}{2\left(-1\right)}
Add 4 to 48.
x=\frac{-2±2\sqrt{13}}{2\left(-1\right)}
Take the square root of 52.
x=\frac{-2±2\sqrt{13}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{13}-2}{-2}
Now solve the equation x=\frac{-2±2\sqrt{13}}{-2} when ± is plus. Add -2 to 2\sqrt{13}.
x=1-\sqrt{13}
Divide -2+2\sqrt{13} by -2.
x=\frac{-2\sqrt{13}-2}{-2}
Now solve the equation x=\frac{-2±2\sqrt{13}}{-2} when ± is minus. Subtract 2\sqrt{13} from -2.
x=\sqrt{13}+1
Divide -2-2\sqrt{13} by -2.
x=1-\sqrt{13} x=\sqrt{13}+1
The equation is now solved.
3x+12+3x=x\left(x+4\right)
Variable x cannot be equal to any of the values -4,0 since division by zero is not defined. Multiply both sides of the equation by 3x\left(x+4\right), the least common multiple of x,x+4,3.
6x+12=x\left(x+4\right)
Combine 3x and 3x to get 6x.
6x+12=x^{2}+4x
Use the distributive property to multiply x by x+4.
6x+12-x^{2}=4x
Subtract x^{2} from both sides.
6x+12-x^{2}-4x=0
Subtract 4x from both sides.
2x+12-x^{2}=0
Combine 6x and -4x to get 2x.
2x-x^{2}=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
-x^{2}+2x=-12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+2x}{-1}=-\frac{12}{-1}
Divide both sides by -1.
x^{2}+\frac{2}{-1}x=-\frac{12}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-2x=-\frac{12}{-1}
Divide 2 by -1.
x^{2}-2x=12
Divide -12 by -1.
x^{2}-2x+1=12+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=13
Add 12 to 1.
\left(x-1\right)^{2}=13
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
x-1=\sqrt{13} x-1=-\sqrt{13}
Simplify.
x=\sqrt{13}+1 x=1-\sqrt{13}
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}