Solve for x
x=\frac{z}{y}
z\neq 0\text{ and }y\neq 0
Solve for y
y=\frac{z}{x}
z\neq 0\text{ and }x\neq 0
Share
Copied to clipboard
yz+xz\times 0=xyy
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by xyz, the least common multiple of x,y,z.
yz+0=xyy
Anything times zero gives zero.
yz=xyy
Anything plus zero gives itself.
yz=xy^{2}
Multiply y and y to get y^{2}.
xy^{2}=yz
Swap sides so that all variable terms are on the left hand side.
y^{2}x=yz
The equation is in standard form.
\frac{y^{2}x}{y^{2}}=\frac{yz}{y^{2}}
Divide both sides by y^{2}.
x=\frac{yz}{y^{2}}
Dividing by y^{2} undoes the multiplication by y^{2}.
x=\frac{z}{y}
Divide yz by y^{2}.
x=\frac{z}{y}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}