Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x-2}{3\left(x^{2}-x+1\right)}
Factor x^{3}+1.
\frac{3}{3\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{3\left(x+1\right)\left(x^{2}-x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x^{2}-x+1\right) and 3\left(x^{2}-x+1\right) is 3\left(x+1\right)\left(x^{2}-x+1\right). Multiply \frac{1}{\left(x+1\right)\left(x^{2}-x+1\right)} times \frac{3}{3}. Multiply \frac{x-2}{3\left(x^{2}-x+1\right)} times \frac{x+1}{x+1}.
\frac{3+\left(x-2\right)\left(x+1\right)}{3\left(x+1\right)\left(x^{2}-x+1\right)}
Since \frac{3}{3\left(x+1\right)\left(x^{2}-x+1\right)} and \frac{\left(x-2\right)\left(x+1\right)}{3\left(x+1\right)\left(x^{2}-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{3+x^{2}+x-2x-2}{3\left(x+1\right)\left(x^{2}-x+1\right)}
Do the multiplications in 3+\left(x-2\right)\left(x+1\right).
\frac{1+x^{2}-x}{3\left(x+1\right)\left(x^{2}-x+1\right)}
Combine like terms in 3+x^{2}+x-2x-2.
\frac{1}{3\left(x+1\right)}
Cancel out x^{2}-x+1 in both numerator and denominator.
\frac{1}{3x+3}
Expand 3\left(x+1\right).
\frac{1}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{x-2}{3\left(x^{2}-x+1\right)}
Factor x^{3}+1.
\frac{3}{3\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{3\left(x+1\right)\left(x^{2}-x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x^{2}-x+1\right) and 3\left(x^{2}-x+1\right) is 3\left(x+1\right)\left(x^{2}-x+1\right). Multiply \frac{1}{\left(x+1\right)\left(x^{2}-x+1\right)} times \frac{3}{3}. Multiply \frac{x-2}{3\left(x^{2}-x+1\right)} times \frac{x+1}{x+1}.
\frac{3+\left(x-2\right)\left(x+1\right)}{3\left(x+1\right)\left(x^{2}-x+1\right)}
Since \frac{3}{3\left(x+1\right)\left(x^{2}-x+1\right)} and \frac{\left(x-2\right)\left(x+1\right)}{3\left(x+1\right)\left(x^{2}-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{3+x^{2}+x-2x-2}{3\left(x+1\right)\left(x^{2}-x+1\right)}
Do the multiplications in 3+\left(x-2\right)\left(x+1\right).
\frac{1+x^{2}-x}{3\left(x+1\right)\left(x^{2}-x+1\right)}
Combine like terms in 3+x^{2}+x-2x-2.
\frac{1}{3\left(x+1\right)}
Cancel out x^{2}-x+1 in both numerator and denominator.
\frac{1}{3x+3}
Expand 3\left(x+1\right).