Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x+1\right)^{2}}{\left(x^{2}-7\right)\left(x+1\right)^{2}}-\frac{2\left(x^{2}-7\right)}{\left(x^{2}-7\right)\left(x+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}-7 and \left(x+1\right)^{2} is \left(x^{2}-7\right)\left(x+1\right)^{2}. Multiply \frac{1}{x^{2}-7} times \frac{\left(x+1\right)^{2}}{\left(x+1\right)^{2}}. Multiply \frac{2}{\left(x+1\right)^{2}} times \frac{x^{2}-7}{x^{2}-7}.
\frac{\left(x+1\right)^{2}-2\left(x^{2}-7\right)}{\left(x^{2}-7\right)\left(x+1\right)^{2}}
Since \frac{\left(x+1\right)^{2}}{\left(x^{2}-7\right)\left(x+1\right)^{2}} and \frac{2\left(x^{2}-7\right)}{\left(x^{2}-7\right)\left(x+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x+1-2x^{2}+14}{\left(x^{2}-7\right)\left(x+1\right)^{2}}
Do the multiplications in \left(x+1\right)^{2}-2\left(x^{2}-7\right).
\frac{-x^{2}+2x+15}{\left(x^{2}-7\right)\left(x+1\right)^{2}}
Combine like terms in x^{2}+2x+1-2x^{2}+14.
\frac{-x^{2}+2x+15}{x^{4}+2x^{3}-6x^{2}-14x-7}
Expand \left(x^{2}-7\right)\left(x+1\right)^{2}.
\frac{\left(x+1\right)^{2}}{\left(x^{2}-7\right)\left(x+1\right)^{2}}-\frac{2\left(x^{2}-7\right)}{\left(x^{2}-7\right)\left(x+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}-7 and \left(x+1\right)^{2} is \left(x^{2}-7\right)\left(x+1\right)^{2}. Multiply \frac{1}{x^{2}-7} times \frac{\left(x+1\right)^{2}}{\left(x+1\right)^{2}}. Multiply \frac{2}{\left(x+1\right)^{2}} times \frac{x^{2}-7}{x^{2}-7}.
\frac{\left(x+1\right)^{2}-2\left(x^{2}-7\right)}{\left(x^{2}-7\right)\left(x+1\right)^{2}}
Since \frac{\left(x+1\right)^{2}}{\left(x^{2}-7\right)\left(x+1\right)^{2}} and \frac{2\left(x^{2}-7\right)}{\left(x^{2}-7\right)\left(x+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x+1-2x^{2}+14}{\left(x^{2}-7\right)\left(x+1\right)^{2}}
Do the multiplications in \left(x+1\right)^{2}-2\left(x^{2}-7\right).
\frac{-x^{2}+2x+15}{\left(x^{2}-7\right)\left(x+1\right)^{2}}
Combine like terms in x^{2}+2x+1-2x^{2}+14.
\frac{-x^{2}+2x+15}{x^{4}+2x^{3}-6x^{2}-14x-7}
Expand \left(x^{2}-7\right)\left(x+1\right)^{2}.