Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Factor x^{2}-5x+6. Factor x^{2}-3x+2.
\frac{x-1}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x-2\right) and \left(x-2\right)\left(x-1\right) is \left(x-3\right)\left(x-2\right)\left(x-1\right). Multiply \frac{1}{\left(x-3\right)\left(x-2\right)} times \frac{x-1}{x-1}. Multiply \frac{1}{\left(x-2\right)\left(x-1\right)} times \frac{x-3}{x-3}.
\frac{x-1+x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Since \frac{x-1}{\left(x-3\right)\left(x-2\right)\left(x-1\right)} and \frac{x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)} have the same denominator, add them by adding their numerators.
\frac{2x-4}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Combine like terms in x-1+x-3.
\frac{2\left(x-2\right)}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Factor the expressions that are not already factored in \frac{2x-4}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}.
\frac{2}{\left(x-3\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Cancel out x-2 in both numerator and denominator.
\frac{2}{\left(x-3\right)\left(x-1\right)}+\frac{2}{\left(x-5\right)\left(x-3\right)}
Factor x^{2}-8x+15.
\frac{2\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}+\frac{2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x-1\right) and \left(x-5\right)\left(x-3\right) is \left(x-5\right)\left(x-3\right)\left(x-1\right). Multiply \frac{2}{\left(x-3\right)\left(x-1\right)} times \frac{x-5}{x-5}. Multiply \frac{2}{\left(x-5\right)\left(x-3\right)} times \frac{x-1}{x-1}.
\frac{2\left(x-5\right)+2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Since \frac{2\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)} and \frac{2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)} have the same denominator, add them by adding their numerators.
\frac{2x-10+2x-2}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Do the multiplications in 2\left(x-5\right)+2\left(x-1\right).
\frac{4x-12}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Combine like terms in 2x-10+2x-2.
\frac{4\left(x-3\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Factor the expressions that are not already factored in \frac{4x-12}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}.
\frac{4}{\left(x-5\right)\left(x-1\right)}
Cancel out x-3 in both numerator and denominator.
\frac{4}{x^{2}-6x+5}
Expand \left(x-5\right)\left(x-1\right).