Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{\left(x-2\right)^{2}}-\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{2x+4}
Factor x^{2}-4x+4. Factor x^{2}-4.
\frac{x+2}{\left(x+2\right)\left(x-2\right)^{2}}-\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^{2}}+\frac{1}{2x+4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)^{2} and \left(x-2\right)\left(x+2\right) is \left(x+2\right)\left(x-2\right)^{2}. Multiply \frac{1}{\left(x-2\right)^{2}} times \frac{x+2}{x+2}. Multiply \frac{x}{\left(x-2\right)\left(x+2\right)} times \frac{x-2}{x-2}.
\frac{x+2-x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^{2}}+\frac{1}{2x+4}
Since \frac{x+2}{\left(x+2\right)\left(x-2\right)^{2}} and \frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x+2-x^{2}+2x}{\left(x+2\right)\left(x-2\right)^{2}}+\frac{1}{2x+4}
Do the multiplications in x+2-x\left(x-2\right).
\frac{3x+2-x^{2}}{\left(x+2\right)\left(x-2\right)^{2}}+\frac{1}{2x+4}
Combine like terms in x+2-x^{2}+2x.
\frac{3x+2-x^{2}}{\left(x+2\right)\left(x-2\right)^{2}}+\frac{1}{2\left(x+2\right)}
Factor 2x+4.
\frac{2\left(3x+2-x^{2}\right)}{2\left(x+2\right)\left(x-2\right)^{2}}+\frac{\left(x-2\right)^{2}}{2\left(x+2\right)\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)\left(x-2\right)^{2} and 2\left(x+2\right) is 2\left(x+2\right)\left(x-2\right)^{2}. Multiply \frac{3x+2-x^{2}}{\left(x+2\right)\left(x-2\right)^{2}} times \frac{2}{2}. Multiply \frac{1}{2\left(x+2\right)} times \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}}.
\frac{2\left(3x+2-x^{2}\right)+\left(x-2\right)^{2}}{2\left(x+2\right)\left(x-2\right)^{2}}
Since \frac{2\left(3x+2-x^{2}\right)}{2\left(x+2\right)\left(x-2\right)^{2}} and \frac{\left(x-2\right)^{2}}{2\left(x+2\right)\left(x-2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{6x+4-2x^{2}+x^{2}-4x+4}{2\left(x+2\right)\left(x-2\right)^{2}}
Do the multiplications in 2\left(3x+2-x^{2}\right)+\left(x-2\right)^{2}.
\frac{2x+8-x^{2}}{2\left(x+2\right)\left(x-2\right)^{2}}
Combine like terms in 6x+4-2x^{2}+x^{2}-4x+4.
\frac{\left(x-4\right)\left(-x-2\right)}{2\left(x+2\right)\left(x-2\right)^{2}}
Factor the expressions that are not already factored in \frac{2x+8-x^{2}}{2\left(x+2\right)\left(x-2\right)^{2}}.
\frac{-\left(x-4\right)\left(x+2\right)}{2\left(x+2\right)\left(x-2\right)^{2}}
Extract the negative sign in -2-x.
\frac{-\left(x-4\right)}{2\left(x-2\right)^{2}}
Cancel out x+2 in both numerator and denominator.
\frac{-\left(x-4\right)}{2x^{2}-8x+8}
Expand 2\left(x-2\right)^{2}.
\frac{-x+4}{2x^{2}-8x+8}
To find the opposite of x-4, find the opposite of each term.