Solve for x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Graph
Share
Copied to clipboard
\left(x+3\right)x+\left(x+3\right)x\times 3=x^{2}\times 2+\left(x^{2}-9\right)\times 2
Variable x cannot be equal to any of the values -3,0,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right)x^{2}, the least common multiple of x^{2}-3x,x^{2}-9,x^{2}.
x^{2}+3x+\left(x+3\right)x\times 3=x^{2}\times 2+\left(x^{2}-9\right)\times 2
Use the distributive property to multiply x+3 by x.
x^{2}+3x+\left(x^{2}+3x\right)\times 3=x^{2}\times 2+\left(x^{2}-9\right)\times 2
Use the distributive property to multiply x+3 by x.
x^{2}+3x+3x^{2}+9x=x^{2}\times 2+\left(x^{2}-9\right)\times 2
Use the distributive property to multiply x^{2}+3x by 3.
4x^{2}+3x+9x=x^{2}\times 2+\left(x^{2}-9\right)\times 2
Combine x^{2} and 3x^{2} to get 4x^{2}.
4x^{2}+12x=x^{2}\times 2+\left(x^{2}-9\right)\times 2
Combine 3x and 9x to get 12x.
4x^{2}+12x=x^{2}\times 2+2x^{2}-18
Use the distributive property to multiply x^{2}-9 by 2.
4x^{2}+12x=4x^{2}-18
Combine x^{2}\times 2 and 2x^{2} to get 4x^{2}.
4x^{2}+12x-4x^{2}=-18
Subtract 4x^{2} from both sides.
12x=-18
Combine 4x^{2} and -4x^{2} to get 0.
x=\frac{-18}{12}
Divide both sides by 12.
x=-\frac{3}{2}
Reduce the fraction \frac{-18}{12} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}