Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{\left(x-1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Factor x^{2}-1. Factor x^{2}+3x-4.
\frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and \left(x-1\right)\left(x+4\right) is \left(x-1\right)\left(x+1\right)\left(x+4\right). Multiply \frac{1}{\left(x-1\right)\left(x+1\right)} times \frac{x+4}{x+4}. Multiply \frac{2}{\left(x-1\right)\left(x+4\right)} times \frac{x+1}{x+1}.
\frac{x+4-2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Since \frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} and \frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x+4-2x-2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Do the multiplications in x+4-2\left(x+1\right).
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
Combine like terms in x+4-2x-2.
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x-3\right)\left(x+1\right)}
Factor x^{2}-2x-3.
\frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right)\left(x+4\right) and \left(x-3\right)\left(x+1\right) is \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right). Multiply \frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} times \frac{x-3}{x-3}. Multiply \frac{1}{\left(x-3\right)\left(x+1\right)} times \frac{\left(x-1\right)\left(x+4\right)}{\left(x-1\right)\left(x+4\right)}.
\frac{\left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Since \frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} and \frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+3x+2x-6+x^{2}+4x-x-4}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Do the multiplications in \left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right).
\frac{8x-10}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
Combine like terms in -x^{2}+3x+2x-6+x^{2}+4x-x-4.
\frac{8x-10}{x^{4}+x^{3}-13x^{2}-x+12}
Expand \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right).