Solve for t
t=x^{2}+1
x\neq 0
Solve for x (complex solution)
x=-\sqrt{t-1}
x=\sqrt{t-1}\text{, }t\neq 1
Solve for x
x=\sqrt{t-1}
x=-\sqrt{t-1}\text{, }t>1
Graph
Share
Copied to clipboard
t-1=x^{2}
Variable t cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by \left(t-1\right)x^{2}, the least common multiple of x^{2},t-1.
t=x^{2}+1
Add 1 to both sides.
t=x^{2}+1\text{, }t\neq 1
Variable t cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}