Evaluate
\frac{2}{3x}-\frac{1}{2x^{2}}
Factor
\frac{4x-3}{6x^{2}}
Graph
Quiz
Polynomial
\frac { 1 } { x ^ { 2 } } + \frac { 2 x } { 3 x ^ { 2 } } - \frac { 3 } { 2 x ^ { 2 } }
Share
Copied to clipboard
\frac{1}{x^{2}}+\frac{2}{3x}-\frac{3}{2x^{2}}
Cancel out x in both numerator and denominator.
\frac{3}{3x^{2}}+\frac{2x}{3x^{2}}-\frac{3}{2x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and 3x is 3x^{2}. Multiply \frac{1}{x^{2}} times \frac{3}{3}. Multiply \frac{2}{3x} times \frac{x}{x}.
\frac{3+2x}{3x^{2}}-\frac{3}{2x^{2}}
Since \frac{3}{3x^{2}} and \frac{2x}{3x^{2}} have the same denominator, add them by adding their numerators.
\frac{2\left(3+2x\right)}{6x^{2}}-\frac{3\times 3}{6x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x^{2} and 2x^{2} is 6x^{2}. Multiply \frac{3+2x}{3x^{2}} times \frac{2}{2}. Multiply \frac{3}{2x^{2}} times \frac{3}{3}.
\frac{2\left(3+2x\right)-3\times 3}{6x^{2}}
Since \frac{2\left(3+2x\right)}{6x^{2}} and \frac{3\times 3}{6x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{6+4x-9}{6x^{2}}
Do the multiplications in 2\left(3+2x\right)-3\times 3.
\frac{-3+4x}{6x^{2}}
Combine like terms in 6+4x-9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}