Evaluate
\frac{2}{xy}
Expand
\frac{2}{xy}
Share
Copied to clipboard
\frac{1}{x^{2}}+\frac{2}{xy}-\frac{x^{2}+y^{2}}{x^{2}y^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
Cancel out x in both numerator and denominator.
\frac{y}{yx^{2}}+\frac{2x}{yx^{2}}-\frac{x^{2}+y^{2}}{x^{2}y^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and xy is yx^{2}. Multiply \frac{1}{x^{2}} times \frac{y}{y}. Multiply \frac{2}{xy} times \frac{x}{x}.
\frac{y+2x}{yx^{2}}-\frac{x^{2}+y^{2}}{x^{2}y^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
Since \frac{y}{yx^{2}} and \frac{2x}{yx^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(y+2x\right)y}{x^{2}y^{2}}-\frac{x^{2}+y^{2}}{x^{2}y^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of yx^{2} and x^{2}y^{2} is x^{2}y^{2}. Multiply \frac{y+2x}{yx^{2}} times \frac{y}{y}.
\frac{\left(y+2x\right)y-\left(x^{2}+y^{2}\right)}{x^{2}y^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
Since \frac{\left(y+2x\right)y}{x^{2}y^{2}} and \frac{x^{2}+y^{2}}{x^{2}y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}+2xy-x^{2}-y^{2}}{x^{2}y^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
Do the multiplications in \left(y+2x\right)y-\left(x^{2}+y^{2}\right).
\frac{2xy-x^{2}}{x^{2}y^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
Combine like terms in y^{2}+2xy-x^{2}-y^{2}.
\frac{x\left(-x+2y\right)}{x^{2}y^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
Factor the expressions that are not already factored in \frac{2xy-x^{2}}{x^{2}y^{2}}.
\frac{-x+2y}{xy^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
Cancel out x in both numerator and denominator.
\frac{-x+2y}{xy^{2}}-\frac{3x}{xy^{2}}+\frac{4}{y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of xy^{2} and y^{2} is xy^{2}. Multiply \frac{3}{y^{2}} times \frac{x}{x}.
\frac{-x+2y-3x}{xy^{2}}+\frac{4}{y^{2}}
Since \frac{-x+2y}{xy^{2}} and \frac{3x}{xy^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-4x+2y}{xy^{2}}+\frac{4}{y^{2}}
Combine like terms in -x+2y-3x.
\frac{-4x+2y}{xy^{2}}+\frac{4x}{xy^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of xy^{2} and y^{2} is xy^{2}. Multiply \frac{4}{y^{2}} times \frac{x}{x}.
\frac{-4x+2y+4x}{xy^{2}}
Since \frac{-4x+2y}{xy^{2}} and \frac{4x}{xy^{2}} have the same denominator, add them by adding their numerators.
\frac{2y}{xy^{2}}
Combine like terms in -4x+2y+4x.
\frac{2}{xy}
Cancel out y in both numerator and denominator.
\frac{1}{x^{2}}+\frac{2}{xy}-\frac{x^{2}+y^{2}}{x^{2}y^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
Cancel out x in both numerator and denominator.
\frac{y}{yx^{2}}+\frac{2x}{yx^{2}}-\frac{x^{2}+y^{2}}{x^{2}y^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and xy is yx^{2}. Multiply \frac{1}{x^{2}} times \frac{y}{y}. Multiply \frac{2}{xy} times \frac{x}{x}.
\frac{y+2x}{yx^{2}}-\frac{x^{2}+y^{2}}{x^{2}y^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
Since \frac{y}{yx^{2}} and \frac{2x}{yx^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(y+2x\right)y}{x^{2}y^{2}}-\frac{x^{2}+y^{2}}{x^{2}y^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of yx^{2} and x^{2}y^{2} is x^{2}y^{2}. Multiply \frac{y+2x}{yx^{2}} times \frac{y}{y}.
\frac{\left(y+2x\right)y-\left(x^{2}+y^{2}\right)}{x^{2}y^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
Since \frac{\left(y+2x\right)y}{x^{2}y^{2}} and \frac{x^{2}+y^{2}}{x^{2}y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}+2xy-x^{2}-y^{2}}{x^{2}y^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
Do the multiplications in \left(y+2x\right)y-\left(x^{2}+y^{2}\right).
\frac{2xy-x^{2}}{x^{2}y^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
Combine like terms in y^{2}+2xy-x^{2}-y^{2}.
\frac{x\left(-x+2y\right)}{x^{2}y^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
Factor the expressions that are not already factored in \frac{2xy-x^{2}}{x^{2}y^{2}}.
\frac{-x+2y}{xy^{2}}-\frac{3}{y^{2}}+\frac{4}{y^{2}}
Cancel out x in both numerator and denominator.
\frac{-x+2y}{xy^{2}}-\frac{3x}{xy^{2}}+\frac{4}{y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of xy^{2} and y^{2} is xy^{2}. Multiply \frac{3}{y^{2}} times \frac{x}{x}.
\frac{-x+2y-3x}{xy^{2}}+\frac{4}{y^{2}}
Since \frac{-x+2y}{xy^{2}} and \frac{3x}{xy^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-4x+2y}{xy^{2}}+\frac{4}{y^{2}}
Combine like terms in -x+2y-3x.
\frac{-4x+2y}{xy^{2}}+\frac{4x}{xy^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of xy^{2} and y^{2} is xy^{2}. Multiply \frac{4}{y^{2}} times \frac{x}{x}.
\frac{-4x+2y+4x}{xy^{2}}
Since \frac{-4x+2y}{xy^{2}} and \frac{4x}{xy^{2}} have the same denominator, add them by adding their numerators.
\frac{2y}{xy^{2}}
Combine like terms in -4x+2y+4x.
\frac{2}{xy}
Cancel out y in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}