Solve for x
x=2
Graph
Share
Copied to clipboard
x-4-\left(x-3\right)\times 2=0
Variable x cannot be equal to any of the values -4,3,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x-3\right)\left(x+4\right), the least common multiple of x^{2}+x-12,x^{2}-16.
x-4-\left(2x-6\right)=0
Use the distributive property to multiply x-3 by 2.
x-4-2x+6=0
To find the opposite of 2x-6, find the opposite of each term.
-x-4+6=0
Combine x and -2x to get -x.
-x+2=0
Add -4 and 6 to get 2.
-x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
x=2
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}