Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Factor x^{2}+4x+3. Factor x^{2}+8x+15.
\frac{x+5}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+3\right) and \left(x+3\right)\left(x+5\right) is \left(x+1\right)\left(x+3\right)\left(x+5\right). Multiply \frac{1}{\left(x+1\right)\left(x+3\right)} times \frac{x+5}{x+5}. Multiply \frac{1}{\left(x+3\right)\left(x+5\right)} times \frac{x+1}{x+1}.
\frac{x+5+x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Since \frac{x+5}{\left(x+1\right)\left(x+3\right)\left(x+5\right)} and \frac{x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{2x+6}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Combine like terms in x+5+x+1.
\frac{2\left(x+3\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Factor the expressions that are not already factored in \frac{2x+6}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}.
\frac{2}{\left(x+1\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Cancel out x+3 in both numerator and denominator.
\frac{2}{\left(x+1\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}
Factor x^{2}+12x+35.
\frac{2\left(x+7\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}+\frac{x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+5\right) and \left(x+5\right)\left(x+7\right) is \left(x+1\right)\left(x+5\right)\left(x+7\right). Multiply \frac{2}{\left(x+1\right)\left(x+5\right)} times \frac{x+7}{x+7}. Multiply \frac{1}{\left(x+5\right)\left(x+7\right)} times \frac{x+1}{x+1}.
\frac{2\left(x+7\right)+x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Since \frac{2\left(x+7\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)} and \frac{x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)} have the same denominator, add them by adding their numerators.
\frac{2x+14+x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Do the multiplications in 2\left(x+7\right)+x+1.
\frac{3x+15}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Combine like terms in 2x+14+x+1.
\frac{3\left(x+5\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Factor the expressions that are not already factored in \frac{3x+15}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}.
\frac{3}{\left(x+1\right)\left(x+7\right)}
Cancel out x+5 in both numerator and denominator.
\frac{3}{x^{2}+8x+7}
Expand \left(x+1\right)\left(x+7\right).