Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

30x-210-\left(30x+120\right)=11\left(x-7\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,7 since division by zero is not defined. Multiply both sides of the equation by 30\left(x-7\right)\left(x+4\right), the least common multiple of x+4,x-7,30.
30x-210-30x-120=11\left(x-7\right)\left(x+4\right)
To find the opposite of 30x+120, find the opposite of each term.
-210-120=11\left(x-7\right)\left(x+4\right)
Combine 30x and -30x to get 0.
-330=11\left(x-7\right)\left(x+4\right)
Subtract 120 from -210 to get -330.
-330=\left(11x-77\right)\left(x+4\right)
Use the distributive property to multiply 11 by x-7.
-330=11x^{2}-33x-308
Use the distributive property to multiply 11x-77 by x+4 and combine like terms.
11x^{2}-33x-308=-330
Swap sides so that all variable terms are on the left hand side.
11x^{2}-33x-308+330=0
Add 330 to both sides.
11x^{2}-33x+22=0
Add -308 and 330 to get 22.
x=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 11\times 22}}{2\times 11}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 11 for a, -33 for b, and 22 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-33\right)±\sqrt{1089-4\times 11\times 22}}{2\times 11}
Square -33.
x=\frac{-\left(-33\right)±\sqrt{1089-44\times 22}}{2\times 11}
Multiply -4 times 11.
x=\frac{-\left(-33\right)±\sqrt{1089-968}}{2\times 11}
Multiply -44 times 22.
x=\frac{-\left(-33\right)±\sqrt{121}}{2\times 11}
Add 1089 to -968.
x=\frac{-\left(-33\right)±11}{2\times 11}
Take the square root of 121.
x=\frac{33±11}{2\times 11}
The opposite of -33 is 33.
x=\frac{33±11}{22}
Multiply 2 times 11.
x=\frac{44}{22}
Now solve the equation x=\frac{33±11}{22} when ± is plus. Add 33 to 11.
x=2
Divide 44 by 22.
x=\frac{22}{22}
Now solve the equation x=\frac{33±11}{22} when ± is minus. Subtract 11 from 33.
x=1
Divide 22 by 22.
x=2 x=1
The equation is now solved.
30x-210-\left(30x+120\right)=11\left(x-7\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,7 since division by zero is not defined. Multiply both sides of the equation by 30\left(x-7\right)\left(x+4\right), the least common multiple of x+4,x-7,30.
30x-210-30x-120=11\left(x-7\right)\left(x+4\right)
To find the opposite of 30x+120, find the opposite of each term.
-210-120=11\left(x-7\right)\left(x+4\right)
Combine 30x and -30x to get 0.
-330=11\left(x-7\right)\left(x+4\right)
Subtract 120 from -210 to get -330.
-330=\left(11x-77\right)\left(x+4\right)
Use the distributive property to multiply 11 by x-7.
-330=11x^{2}-33x-308
Use the distributive property to multiply 11x-77 by x+4 and combine like terms.
11x^{2}-33x-308=-330
Swap sides so that all variable terms are on the left hand side.
11x^{2}-33x=-330+308
Add 308 to both sides.
11x^{2}-33x=-22
Add -330 and 308 to get -22.
\frac{11x^{2}-33x}{11}=-\frac{22}{11}
Divide both sides by 11.
x^{2}+\left(-\frac{33}{11}\right)x=-\frac{22}{11}
Dividing by 11 undoes the multiplication by 11.
x^{2}-3x=-\frac{22}{11}
Divide -33 by 11.
x^{2}-3x=-2
Divide -22 by 11.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-2+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{1}{4}
Add -2 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{1}{2} x-\frac{3}{2}=-\frac{1}{2}
Simplify.
x=2 x=1
Add \frac{3}{2} to both sides of the equation.