Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

30x+30-\left(30x+120\right)=11\left(x+1\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,-1 since division by zero is not defined. Multiply both sides of the equation by 30\left(x+1\right)\left(x+4\right), the least common multiple of x+4,x+1,30.
30x+30-30x-120=11\left(x+1\right)\left(x+4\right)
To find the opposite of 30x+120, find the opposite of each term.
30-120=11\left(x+1\right)\left(x+4\right)
Combine 30x and -30x to get 0.
-90=11\left(x+1\right)\left(x+4\right)
Subtract 120 from 30 to get -90.
-90=\left(11x+11\right)\left(x+4\right)
Use the distributive property to multiply 11 by x+1.
-90=11x^{2}+55x+44
Use the distributive property to multiply 11x+11 by x+4 and combine like terms.
11x^{2}+55x+44=-90
Swap sides so that all variable terms are on the left hand side.
11x^{2}+55x+44+90=0
Add 90 to both sides.
11x^{2}+55x+134=0
Add 44 and 90 to get 134.
x=\frac{-55±\sqrt{55^{2}-4\times 11\times 134}}{2\times 11}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 11 for a, 55 for b, and 134 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-55±\sqrt{3025-4\times 11\times 134}}{2\times 11}
Square 55.
x=\frac{-55±\sqrt{3025-44\times 134}}{2\times 11}
Multiply -4 times 11.
x=\frac{-55±\sqrt{3025-5896}}{2\times 11}
Multiply -44 times 134.
x=\frac{-55±\sqrt{-2871}}{2\times 11}
Add 3025 to -5896.
x=\frac{-55±3\sqrt{319}i}{2\times 11}
Take the square root of -2871.
x=\frac{-55±3\sqrt{319}i}{22}
Multiply 2 times 11.
x=\frac{-55+3\sqrt{319}i}{22}
Now solve the equation x=\frac{-55±3\sqrt{319}i}{22} when ± is plus. Add -55 to 3i\sqrt{319}.
x=\frac{3\sqrt{319}i}{22}-\frac{5}{2}
Divide -55+3i\sqrt{319} by 22.
x=\frac{-3\sqrt{319}i-55}{22}
Now solve the equation x=\frac{-55±3\sqrt{319}i}{22} when ± is minus. Subtract 3i\sqrt{319} from -55.
x=-\frac{3\sqrt{319}i}{22}-\frac{5}{2}
Divide -55-3i\sqrt{319} by 22.
x=\frac{3\sqrt{319}i}{22}-\frac{5}{2} x=-\frac{3\sqrt{319}i}{22}-\frac{5}{2}
The equation is now solved.
30x+30-\left(30x+120\right)=11\left(x+1\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,-1 since division by zero is not defined. Multiply both sides of the equation by 30\left(x+1\right)\left(x+4\right), the least common multiple of x+4,x+1,30.
30x+30-30x-120=11\left(x+1\right)\left(x+4\right)
To find the opposite of 30x+120, find the opposite of each term.
30-120=11\left(x+1\right)\left(x+4\right)
Combine 30x and -30x to get 0.
-90=11\left(x+1\right)\left(x+4\right)
Subtract 120 from 30 to get -90.
-90=\left(11x+11\right)\left(x+4\right)
Use the distributive property to multiply 11 by x+1.
-90=11x^{2}+55x+44
Use the distributive property to multiply 11x+11 by x+4 and combine like terms.
11x^{2}+55x+44=-90
Swap sides so that all variable terms are on the left hand side.
11x^{2}+55x=-90-44
Subtract 44 from both sides.
11x^{2}+55x=-134
Subtract 44 from -90 to get -134.
\frac{11x^{2}+55x}{11}=-\frac{134}{11}
Divide both sides by 11.
x^{2}+\frac{55}{11}x=-\frac{134}{11}
Dividing by 11 undoes the multiplication by 11.
x^{2}+5x=-\frac{134}{11}
Divide 55 by 11.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-\frac{134}{11}+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=-\frac{134}{11}+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=-\frac{261}{44}
Add -\frac{134}{11} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{2}\right)^{2}=-\frac{261}{44}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{-\frac{261}{44}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{3\sqrt{319}i}{22} x+\frac{5}{2}=-\frac{3\sqrt{319}i}{22}
Simplify.
x=\frac{3\sqrt{319}i}{22}-\frac{5}{2} x=-\frac{3\sqrt{319}i}{22}-\frac{5}{2}
Subtract \frac{5}{2} from both sides of the equation.