Solve for x
x=7
Graph
Share
Copied to clipboard
30x-120-\left(6x+18\right)\times 2=\left(5x+15\right)\times 3-\left(30x-120\right)\times 2
Variable x cannot be equal to any of the values -3,4 since division by zero is not defined. Multiply both sides of the equation by 30\left(x-4\right)\left(x+3\right), the least common multiple of x+3,5x-20,2\left(3x-12\right).
30x-120-\left(12x+36\right)=\left(5x+15\right)\times 3-\left(30x-120\right)\times 2
Use the distributive property to multiply 6x+18 by 2.
30x-120-12x-36=\left(5x+15\right)\times 3-\left(30x-120\right)\times 2
To find the opposite of 12x+36, find the opposite of each term.
18x-120-36=\left(5x+15\right)\times 3-\left(30x-120\right)\times 2
Combine 30x and -12x to get 18x.
18x-156=\left(5x+15\right)\times 3-\left(30x-120\right)\times 2
Subtract 36 from -120 to get -156.
18x-156=15x+45-\left(30x-120\right)\times 2
Use the distributive property to multiply 5x+15 by 3.
18x-156=15x+45-\left(60x-240\right)
Use the distributive property to multiply 30x-120 by 2.
18x-156=15x+45-60x+240
To find the opposite of 60x-240, find the opposite of each term.
18x-156=-45x+45+240
Combine 15x and -60x to get -45x.
18x-156=-45x+285
Add 45 and 240 to get 285.
18x-156+45x=285
Add 45x to both sides.
63x-156=285
Combine 18x and 45x to get 63x.
63x=285+156
Add 156 to both sides.
63x=441
Add 285 and 156 to get 441.
x=\frac{441}{63}
Divide both sides by 63.
x=7
Divide 441 by 63 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}