Solve for x
x = -\frac{63}{22} = -2\frac{19}{22} \approx -2.863636364
Graph
Share
Copied to clipboard
3+3\left(x+3\right)\times \frac{2}{3}=24\left(x+3\right)
Variable x cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by 3\left(x+3\right), the least common multiple of x+3,3.
3+2\left(x+3\right)=24\left(x+3\right)
Multiply 3 and \frac{2}{3} to get 2.
3+2x+6=24\left(x+3\right)
Use the distributive property to multiply 2 by x+3.
9+2x=24\left(x+3\right)
Add 3 and 6 to get 9.
9+2x=24x+72
Use the distributive property to multiply 24 by x+3.
9+2x-24x=72
Subtract 24x from both sides.
9-22x=72
Combine 2x and -24x to get -22x.
-22x=72-9
Subtract 9 from both sides.
-22x=63
Subtract 9 from 72 to get 63.
x=\frac{63}{-22}
Divide both sides by -22.
x=-\frac{63}{22}
Fraction \frac{63}{-22} can be rewritten as -\frac{63}{22} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}