Solve for x
x=\frac{\sqrt{37}-9}{2}\approx -1.458618735
x=\frac{-\sqrt{37}-9}{2}\approx -7.541381265
Graph
Share
Copied to clipboard
x^{2}-1-\left(x+1\right)\left(x+2\right)\times 2=\left(x+2\right)\times 3
Variable x cannot be equal to any of the values -2,-1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right)\left(x+2\right), the least common multiple of x+2,x-1,x^{2}-1.
x^{2}-1-\left(x^{2}+3x+2\right)\times 2=\left(x+2\right)\times 3
Use the distributive property to multiply x+1 by x+2 and combine like terms.
x^{2}-1-\left(2x^{2}+6x+4\right)=\left(x+2\right)\times 3
Use the distributive property to multiply x^{2}+3x+2 by 2.
x^{2}-1-2x^{2}-6x-4=\left(x+2\right)\times 3
To find the opposite of 2x^{2}+6x+4, find the opposite of each term.
-x^{2}-1-6x-4=\left(x+2\right)\times 3
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-5-6x=\left(x+2\right)\times 3
Subtract 4 from -1 to get -5.
-x^{2}-5-6x=3x+6
Use the distributive property to multiply x+2 by 3.
-x^{2}-5-6x-3x=6
Subtract 3x from both sides.
-x^{2}-5-9x=6
Combine -6x and -3x to get -9x.
-x^{2}-5-9x-6=0
Subtract 6 from both sides.
-x^{2}-11-9x=0
Subtract 6 from -5 to get -11.
-x^{2}-9x-11=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-1\right)\left(-11\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -9 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-1\right)\left(-11\right)}}{2\left(-1\right)}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81+4\left(-11\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-9\right)±\sqrt{81-44}}{2\left(-1\right)}
Multiply 4 times -11.
x=\frac{-\left(-9\right)±\sqrt{37}}{2\left(-1\right)}
Add 81 to -44.
x=\frac{9±\sqrt{37}}{2\left(-1\right)}
The opposite of -9 is 9.
x=\frac{9±\sqrt{37}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{37}+9}{-2}
Now solve the equation x=\frac{9±\sqrt{37}}{-2} when ± is plus. Add 9 to \sqrt{37}.
x=\frac{-\sqrt{37}-9}{2}
Divide 9+\sqrt{37} by -2.
x=\frac{9-\sqrt{37}}{-2}
Now solve the equation x=\frac{9±\sqrt{37}}{-2} when ± is minus. Subtract \sqrt{37} from 9.
x=\frac{\sqrt{37}-9}{2}
Divide 9-\sqrt{37} by -2.
x=\frac{-\sqrt{37}-9}{2} x=\frac{\sqrt{37}-9}{2}
The equation is now solved.
x^{2}-1-\left(x+1\right)\left(x+2\right)\times 2=\left(x+2\right)\times 3
Variable x cannot be equal to any of the values -2,-1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right)\left(x+2\right), the least common multiple of x+2,x-1,x^{2}-1.
x^{2}-1-\left(x^{2}+3x+2\right)\times 2=\left(x+2\right)\times 3
Use the distributive property to multiply x+1 by x+2 and combine like terms.
x^{2}-1-\left(2x^{2}+6x+4\right)=\left(x+2\right)\times 3
Use the distributive property to multiply x^{2}+3x+2 by 2.
x^{2}-1-2x^{2}-6x-4=\left(x+2\right)\times 3
To find the opposite of 2x^{2}+6x+4, find the opposite of each term.
-x^{2}-1-6x-4=\left(x+2\right)\times 3
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-5-6x=\left(x+2\right)\times 3
Subtract 4 from -1 to get -5.
-x^{2}-5-6x=3x+6
Use the distributive property to multiply x+2 by 3.
-x^{2}-5-6x-3x=6
Subtract 3x from both sides.
-x^{2}-5-9x=6
Combine -6x and -3x to get -9x.
-x^{2}-9x=6+5
Add 5 to both sides.
-x^{2}-9x=11
Add 6 and 5 to get 11.
\frac{-x^{2}-9x}{-1}=\frac{11}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{9}{-1}\right)x=\frac{11}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+9x=\frac{11}{-1}
Divide -9 by -1.
x^{2}+9x=-11
Divide 11 by -1.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=-11+\left(\frac{9}{2}\right)^{2}
Divide 9, the coefficient of the x term, by 2 to get \frac{9}{2}. Then add the square of \frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+9x+\frac{81}{4}=-11+\frac{81}{4}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+9x+\frac{81}{4}=\frac{37}{4}
Add -11 to \frac{81}{4}.
\left(x+\frac{9}{2}\right)^{2}=\frac{37}{4}
Factor x^{2}+9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{37}{4}}
Take the square root of both sides of the equation.
x+\frac{9}{2}=\frac{\sqrt{37}}{2} x+\frac{9}{2}=-\frac{\sqrt{37}}{2}
Simplify.
x=\frac{\sqrt{37}-9}{2} x=\frac{-\sqrt{37}-9}{2}
Subtract \frac{9}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}