Solve for x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Graph
Share
Copied to clipboard
1=-2\left(x+2\right)
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by x+2.
1=-2x-4
Use the distributive property to multiply -2 by x+2.
-2x-4=1
Swap sides so that all variable terms are on the left hand side.
-2x=1+4
Add 4 to both sides.
-2x=5
Add 1 and 4 to get 5.
x=\frac{5}{-2}
Divide both sides by -2.
x=-\frac{5}{2}
Fraction \frac{5}{-2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}