Solve for x
x=\frac{\sqrt{10}-10}{3}\approx -2.27924078
x=\frac{-\sqrt{10}-10}{3}\approx -4.387425887
Graph
Share
Copied to clipboard
x\left(x+3\right)+x\left(x+2\right)=\left(x+2\right)\left(x+3\right)\times 5
Variable x cannot be equal to any of the values -3,-2,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+2\right)\left(x+3\right), the least common multiple of x+2,x+3,x.
x^{2}+3x+x\left(x+2\right)=\left(x+2\right)\left(x+3\right)\times 5
Use the distributive property to multiply x by x+3.
x^{2}+3x+x^{2}+2x=\left(x+2\right)\left(x+3\right)\times 5
Use the distributive property to multiply x by x+2.
2x^{2}+3x+2x=\left(x+2\right)\left(x+3\right)\times 5
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+5x=\left(x+2\right)\left(x+3\right)\times 5
Combine 3x and 2x to get 5x.
2x^{2}+5x=\left(x^{2}+5x+6\right)\times 5
Use the distributive property to multiply x+2 by x+3 and combine like terms.
2x^{2}+5x=5x^{2}+25x+30
Use the distributive property to multiply x^{2}+5x+6 by 5.
2x^{2}+5x-5x^{2}=25x+30
Subtract 5x^{2} from both sides.
-3x^{2}+5x=25x+30
Combine 2x^{2} and -5x^{2} to get -3x^{2}.
-3x^{2}+5x-25x=30
Subtract 25x from both sides.
-3x^{2}-20x=30
Combine 5x and -25x to get -20x.
-3x^{2}-20x-30=0
Subtract 30 from both sides.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\left(-3\right)\left(-30\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -20 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\left(-3\right)\left(-30\right)}}{2\left(-3\right)}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400+12\left(-30\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-20\right)±\sqrt{400-360}}{2\left(-3\right)}
Multiply 12 times -30.
x=\frac{-\left(-20\right)±\sqrt{40}}{2\left(-3\right)}
Add 400 to -360.
x=\frac{-\left(-20\right)±2\sqrt{10}}{2\left(-3\right)}
Take the square root of 40.
x=\frac{20±2\sqrt{10}}{2\left(-3\right)}
The opposite of -20 is 20.
x=\frac{20±2\sqrt{10}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{10}+20}{-6}
Now solve the equation x=\frac{20±2\sqrt{10}}{-6} when ± is plus. Add 20 to 2\sqrt{10}.
x=\frac{-\sqrt{10}-10}{3}
Divide 20+2\sqrt{10} by -6.
x=\frac{20-2\sqrt{10}}{-6}
Now solve the equation x=\frac{20±2\sqrt{10}}{-6} when ± is minus. Subtract 2\sqrt{10} from 20.
x=\frac{\sqrt{10}-10}{3}
Divide 20-2\sqrt{10} by -6.
x=\frac{-\sqrt{10}-10}{3} x=\frac{\sqrt{10}-10}{3}
The equation is now solved.
x\left(x+3\right)+x\left(x+2\right)=\left(x+2\right)\left(x+3\right)\times 5
Variable x cannot be equal to any of the values -3,-2,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+2\right)\left(x+3\right), the least common multiple of x+2,x+3,x.
x^{2}+3x+x\left(x+2\right)=\left(x+2\right)\left(x+3\right)\times 5
Use the distributive property to multiply x by x+3.
x^{2}+3x+x^{2}+2x=\left(x+2\right)\left(x+3\right)\times 5
Use the distributive property to multiply x by x+2.
2x^{2}+3x+2x=\left(x+2\right)\left(x+3\right)\times 5
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+5x=\left(x+2\right)\left(x+3\right)\times 5
Combine 3x and 2x to get 5x.
2x^{2}+5x=\left(x^{2}+5x+6\right)\times 5
Use the distributive property to multiply x+2 by x+3 and combine like terms.
2x^{2}+5x=5x^{2}+25x+30
Use the distributive property to multiply x^{2}+5x+6 by 5.
2x^{2}+5x-5x^{2}=25x+30
Subtract 5x^{2} from both sides.
-3x^{2}+5x=25x+30
Combine 2x^{2} and -5x^{2} to get -3x^{2}.
-3x^{2}+5x-25x=30
Subtract 25x from both sides.
-3x^{2}-20x=30
Combine 5x and -25x to get -20x.
\frac{-3x^{2}-20x}{-3}=\frac{30}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{20}{-3}\right)x=\frac{30}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{20}{3}x=\frac{30}{-3}
Divide -20 by -3.
x^{2}+\frac{20}{3}x=-10
Divide 30 by -3.
x^{2}+\frac{20}{3}x+\left(\frac{10}{3}\right)^{2}=-10+\left(\frac{10}{3}\right)^{2}
Divide \frac{20}{3}, the coefficient of the x term, by 2 to get \frac{10}{3}. Then add the square of \frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{20}{3}x+\frac{100}{9}=-10+\frac{100}{9}
Square \frac{10}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{20}{3}x+\frac{100}{9}=\frac{10}{9}
Add -10 to \frac{100}{9}.
\left(x+\frac{10}{3}\right)^{2}=\frac{10}{9}
Factor x^{2}+\frac{20}{3}x+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{10}{3}\right)^{2}}=\sqrt{\frac{10}{9}}
Take the square root of both sides of the equation.
x+\frac{10}{3}=\frac{\sqrt{10}}{3} x+\frac{10}{3}=-\frac{\sqrt{10}}{3}
Simplify.
x=\frac{\sqrt{10}-10}{3} x=\frac{-\sqrt{10}-10}{3}
Subtract \frac{10}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}