Solve for x
x = -\frac{28}{3} = -9\frac{1}{3} \approx -9.333333333
Graph
Share
Copied to clipboard
x+8+\left(x+10\right)\times 18=-\left(x+8\right)\times 8
Variable x cannot be equal to any of the values -10,-8 since division by zero is not defined. Multiply both sides of the equation by \left(x+8\right)\left(x+10\right), the least common multiple of x+10,x+8.
x+8+18x+180=-\left(x+8\right)\times 8
Use the distributive property to multiply x+10 by 18.
19x+8+180=-\left(x+8\right)\times 8
Combine x and 18x to get 19x.
19x+188=-\left(x+8\right)\times 8
Add 8 and 180 to get 188.
19x+188=-\left(8x+64\right)
Use the distributive property to multiply x+8 by 8.
19x+188=-8x-64
To find the opposite of 8x+64, find the opposite of each term.
19x+188+8x=-64
Add 8x to both sides.
27x+188=-64
Combine 19x and 8x to get 27x.
27x=-64-188
Subtract 188 from both sides.
27x=-252
Subtract 188 from -64 to get -252.
x=\frac{-252}{27}
Divide both sides by 27.
x=-\frac{28}{3}
Reduce the fraction \frac{-252}{27} to lowest terms by extracting and canceling out 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}