Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{x+1}-\frac{x+3}{x^{2}-1}\times \frac{\left(x-1\right)^{2}}{\left(x-3\right)\left(x-1\right)}
Factor the expressions that are not already factored in \frac{x^{2}-2x+1}{x^{2}-4x+3}.
\frac{1}{x+1}-\frac{x+3}{x^{2}-1}\times \frac{x-1}{x-3}
Cancel out x-1 in both numerator and denominator.
\frac{1}{x+1}-\frac{\left(x+3\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x-3\right)}
Multiply \frac{x+3}{x^{2}-1} times \frac{x-1}{x-3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{x+1}-\frac{\left(x-1\right)\left(x+3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored in \frac{\left(x+3\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x-3\right)}.
\frac{1}{x+1}-\frac{x+3}{\left(x-3\right)\left(x+1\right)}
Cancel out x-1 in both numerator and denominator.
\frac{x-3}{\left(x-3\right)\left(x+1\right)}-\frac{x+3}{\left(x-3\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x-3\right)\left(x+1\right) is \left(x-3\right)\left(x+1\right). Multiply \frac{1}{x+1} times \frac{x-3}{x-3}.
\frac{x-3-\left(x+3\right)}{\left(x-3\right)\left(x+1\right)}
Since \frac{x-3}{\left(x-3\right)\left(x+1\right)} and \frac{x+3}{\left(x-3\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x-3-x-3}{\left(x-3\right)\left(x+1\right)}
Do the multiplications in x-3-\left(x+3\right).
\frac{-6}{\left(x-3\right)\left(x+1\right)}
Combine like terms in x-3-x-3.
\frac{-6}{x^{2}-2x-3}
Expand \left(x-3\right)\left(x+1\right).
\frac{1}{x+1}-\frac{x+3}{x^{2}-1}\times \frac{\left(x-1\right)^{2}}{\left(x-3\right)\left(x-1\right)}
Factor the expressions that are not already factored in \frac{x^{2}-2x+1}{x^{2}-4x+3}.
\frac{1}{x+1}-\frac{x+3}{x^{2}-1}\times \frac{x-1}{x-3}
Cancel out x-1 in both numerator and denominator.
\frac{1}{x+1}-\frac{\left(x+3\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x-3\right)}
Multiply \frac{x+3}{x^{2}-1} times \frac{x-1}{x-3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{x+1}-\frac{\left(x-1\right)\left(x+3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored in \frac{\left(x+3\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x-3\right)}.
\frac{1}{x+1}-\frac{x+3}{\left(x-3\right)\left(x+1\right)}
Cancel out x-1 in both numerator and denominator.
\frac{x-3}{\left(x-3\right)\left(x+1\right)}-\frac{x+3}{\left(x-3\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x-3\right)\left(x+1\right) is \left(x-3\right)\left(x+1\right). Multiply \frac{1}{x+1} times \frac{x-3}{x-3}.
\frac{x-3-\left(x+3\right)}{\left(x-3\right)\left(x+1\right)}
Since \frac{x-3}{\left(x-3\right)\left(x+1\right)} and \frac{x+3}{\left(x-3\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x-3-x-3}{\left(x-3\right)\left(x+1\right)}
Do the multiplications in x-3-\left(x+3\right).
\frac{-6}{\left(x-3\right)\left(x+1\right)}
Combine like terms in x-3-x-3.
\frac{-6}{x^{2}-2x-3}
Expand \left(x-3\right)\left(x+1\right).