Solve for x
x=\frac{\sqrt{745}-15}{26}\approx 0.47287262
x=\frac{-\sqrt{745}-15}{26}\approx -1.626718774
Graph
Share
Copied to clipboard
12x+24+12x+12=13\left(x+1\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,-1 since division by zero is not defined. Multiply both sides of the equation by 12\left(x+1\right)\left(x+2\right), the least common multiple of x+1,x+2,12.
24x+24+12=13\left(x+1\right)\left(x+2\right)
Combine 12x and 12x to get 24x.
24x+36=13\left(x+1\right)\left(x+2\right)
Add 24 and 12 to get 36.
24x+36=\left(13x+13\right)\left(x+2\right)
Use the distributive property to multiply 13 by x+1.
24x+36=13x^{2}+39x+26
Use the distributive property to multiply 13x+13 by x+2 and combine like terms.
24x+36-13x^{2}=39x+26
Subtract 13x^{2} from both sides.
24x+36-13x^{2}-39x=26
Subtract 39x from both sides.
-15x+36-13x^{2}=26
Combine 24x and -39x to get -15x.
-15x+36-13x^{2}-26=0
Subtract 26 from both sides.
-15x+10-13x^{2}=0
Subtract 26 from 36 to get 10.
-13x^{2}-15x+10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-13\right)\times 10}}{2\left(-13\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -13 for a, -15 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\left(-13\right)\times 10}}{2\left(-13\right)}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225+52\times 10}}{2\left(-13\right)}
Multiply -4 times -13.
x=\frac{-\left(-15\right)±\sqrt{225+520}}{2\left(-13\right)}
Multiply 52 times 10.
x=\frac{-\left(-15\right)±\sqrt{745}}{2\left(-13\right)}
Add 225 to 520.
x=\frac{15±\sqrt{745}}{2\left(-13\right)}
The opposite of -15 is 15.
x=\frac{15±\sqrt{745}}{-26}
Multiply 2 times -13.
x=\frac{\sqrt{745}+15}{-26}
Now solve the equation x=\frac{15±\sqrt{745}}{-26} when ± is plus. Add 15 to \sqrt{745}.
x=\frac{-\sqrt{745}-15}{26}
Divide 15+\sqrt{745} by -26.
x=\frac{15-\sqrt{745}}{-26}
Now solve the equation x=\frac{15±\sqrt{745}}{-26} when ± is minus. Subtract \sqrt{745} from 15.
x=\frac{\sqrt{745}-15}{26}
Divide 15-\sqrt{745} by -26.
x=\frac{-\sqrt{745}-15}{26} x=\frac{\sqrt{745}-15}{26}
The equation is now solved.
12x+24+12x+12=13\left(x+1\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,-1 since division by zero is not defined. Multiply both sides of the equation by 12\left(x+1\right)\left(x+2\right), the least common multiple of x+1,x+2,12.
24x+24+12=13\left(x+1\right)\left(x+2\right)
Combine 12x and 12x to get 24x.
24x+36=13\left(x+1\right)\left(x+2\right)
Add 24 and 12 to get 36.
24x+36=\left(13x+13\right)\left(x+2\right)
Use the distributive property to multiply 13 by x+1.
24x+36=13x^{2}+39x+26
Use the distributive property to multiply 13x+13 by x+2 and combine like terms.
24x+36-13x^{2}=39x+26
Subtract 13x^{2} from both sides.
24x+36-13x^{2}-39x=26
Subtract 39x from both sides.
-15x+36-13x^{2}=26
Combine 24x and -39x to get -15x.
-15x-13x^{2}=26-36
Subtract 36 from both sides.
-15x-13x^{2}=-10
Subtract 36 from 26 to get -10.
-13x^{2}-15x=-10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-13x^{2}-15x}{-13}=-\frac{10}{-13}
Divide both sides by -13.
x^{2}+\left(-\frac{15}{-13}\right)x=-\frac{10}{-13}
Dividing by -13 undoes the multiplication by -13.
x^{2}+\frac{15}{13}x=-\frac{10}{-13}
Divide -15 by -13.
x^{2}+\frac{15}{13}x=\frac{10}{13}
Divide -10 by -13.
x^{2}+\frac{15}{13}x+\left(\frac{15}{26}\right)^{2}=\frac{10}{13}+\left(\frac{15}{26}\right)^{2}
Divide \frac{15}{13}, the coefficient of the x term, by 2 to get \frac{15}{26}. Then add the square of \frac{15}{26} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{15}{13}x+\frac{225}{676}=\frac{10}{13}+\frac{225}{676}
Square \frac{15}{26} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{15}{13}x+\frac{225}{676}=\frac{745}{676}
Add \frac{10}{13} to \frac{225}{676} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{15}{26}\right)^{2}=\frac{745}{676}
Factor x^{2}+\frac{15}{13}x+\frac{225}{676}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{26}\right)^{2}}=\sqrt{\frac{745}{676}}
Take the square root of both sides of the equation.
x+\frac{15}{26}=\frac{\sqrt{745}}{26} x+\frac{15}{26}=-\frac{\sqrt{745}}{26}
Simplify.
x=\frac{\sqrt{745}-15}{26} x=\frac{-\sqrt{745}-15}{26}
Subtract \frac{15}{26} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}