Solve for m
m=\frac{ru-rv+uv}{uv}
v\neq 0\text{ and }u\neq 0\text{ and }r\neq 0
Solve for r
\left\{\begin{matrix}r=-\frac{uv\left(1-m\right)}{u-v}\text{, }&m\neq 1\text{ and }u\neq 0\text{ and }v\neq 0\text{ and }v\neq u\\r\neq 0\text{, }&u=v\text{ and }m=1\text{ and }v\neq 0\end{matrix}\right.
Quiz
Linear Equation
5 problems similar to:
\frac { 1 } { v } - \frac { 1 } { u } = \frac { m - 1 } { r }
Share
Copied to clipboard
ru-rv=uv\left(m-1\right)
Multiply both sides of the equation by ruv, the least common multiple of v,u,r.
ru-rv=uvm-uv
Use the distributive property to multiply uv by m-1.
uvm-uv=ru-rv
Swap sides so that all variable terms are on the left hand side.
uvm=ru-rv+uv
Add uv to both sides.
\frac{uvm}{uv}=\frac{ru-rv+uv}{uv}
Divide both sides by uv.
m=\frac{ru-rv+uv}{uv}
Dividing by uv undoes the multiplication by uv.
m=\frac{r}{v}-\frac{r}{u}+1
Divide ru-rv+uv by uv.
ru-rv=uv\left(m-1\right)
Variable r cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ruv, the least common multiple of v,u,r.
ru-rv=uvm-uv
Use the distributive property to multiply uv by m-1.
ru-rv=muv-uv
Reorder the terms.
\left(u-v\right)r=muv-uv
Combine all terms containing r.
\frac{\left(u-v\right)r}{u-v}=\frac{uv\left(m-1\right)}{u-v}
Divide both sides by u-v.
r=\frac{uv\left(m-1\right)}{u-v}
Dividing by u-v undoes the multiplication by u-v.
r=\frac{uv\left(m-1\right)}{u-v}\text{, }r\neq 0
Variable r cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}