Solve for v
v = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Quiz
Linear Equation
5 problems similar to:
\frac { 1 } { v } \frac { - 1 } { 10 } = \frac { 1 } { 15 }
Share
Copied to clipboard
30\times 1\times \frac{-1}{10}=2v
Variable v cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30v, the least common multiple of v,10,15.
30\times \frac{-1}{10}=2v
Multiply 30 and 1 to get 30.
30\left(-\frac{1}{10}\right)=2v
Fraction \frac{-1}{10} can be rewritten as -\frac{1}{10} by extracting the negative sign.
\frac{30\left(-1\right)}{10}=2v
Express 30\left(-\frac{1}{10}\right) as a single fraction.
\frac{-30}{10}=2v
Multiply 30 and -1 to get -30.
-3=2v
Divide -30 by 10 to get -3.
2v=-3
Swap sides so that all variable terms are on the left hand side.
v=\frac{-3}{2}
Divide both sides by 2.
v=-\frac{3}{2}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}