Solve for u
u=-\frac{19x-12}{4-5x}
x\neq 0\text{ and }x\neq \frac{4}{5}
Solve for x
x=-\frac{4\left(u-3\right)}{19-5u}
u\neq 3\text{ and }u\neq \frac{19}{5}
Graph
Share
Copied to clipboard
4x+4u-12=x\left(u-3\right)\left(1\times 4+1\right)
Variable u cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by 4x\left(u-3\right), the least common multiple of u-3,x,4.
4x+4u-12=x\left(u-3\right)\left(4+1\right)
Multiply 1 and 4 to get 4.
4x+4u-12=x\left(u-3\right)\times 5
Add 4 and 1 to get 5.
4x+4u-12=\left(xu-3x\right)\times 5
Use the distributive property to multiply x by u-3.
4x+4u-12=5xu-15x
Use the distributive property to multiply xu-3x by 5.
4x+4u-12-5xu=-15x
Subtract 5xu from both sides.
4u-12-5xu=-15x-4x
Subtract 4x from both sides.
4u-12-5xu=-19x
Combine -15x and -4x to get -19x.
4u-5xu=-19x+12
Add 12 to both sides.
\left(4-5x\right)u=-19x+12
Combine all terms containing u.
\left(4-5x\right)u=12-19x
The equation is in standard form.
\frac{\left(4-5x\right)u}{4-5x}=\frac{12-19x}{4-5x}
Divide both sides by 4-5x.
u=\frac{12-19x}{4-5x}
Dividing by 4-5x undoes the multiplication by 4-5x.
u=\frac{12-19x}{4-5x}\text{, }u\neq 3
Variable u cannot be equal to 3.
4x+4u-12=x\left(u-3\right)\left(1\times 4+1\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4x\left(u-3\right), the least common multiple of u-3,x,4.
4x+4u-12=x\left(u-3\right)\left(4+1\right)
Multiply 1 and 4 to get 4.
4x+4u-12=x\left(u-3\right)\times 5
Add 4 and 1 to get 5.
4x+4u-12=\left(xu-3x\right)\times 5
Use the distributive property to multiply x by u-3.
4x+4u-12=5xu-15x
Use the distributive property to multiply xu-3x by 5.
4x+4u-12-5xu=-15x
Subtract 5xu from both sides.
4x+4u-12-5xu+15x=0
Add 15x to both sides.
19x+4u-12-5xu=0
Combine 4x and 15x to get 19x.
19x-12-5xu=-4u
Subtract 4u from both sides. Anything subtracted from zero gives its negation.
19x-5xu=-4u+12
Add 12 to both sides.
\left(19-5u\right)x=-4u+12
Combine all terms containing x.
\left(19-5u\right)x=12-4u
The equation is in standard form.
\frac{\left(19-5u\right)x}{19-5u}=\frac{12-4u}{19-5u}
Divide both sides by 19-5u.
x=\frac{12-4u}{19-5u}
Dividing by 19-5u undoes the multiplication by 19-5u.
x=\frac{4\left(3-u\right)}{19-5u}
Divide 12-4u by 19-5u.
x=\frac{4\left(3-u\right)}{19-5u}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}