Solve for f
f=\frac{uv}{v-u}
v\neq 0\text{ and }u\neq 0\text{ and }u\neq v
Solve for u
u=\frac{fv}{v+f}
v\neq 0\text{ and }f\neq 0\text{ and }f\neq -v
Share
Copied to clipboard
fv=u\left(f+v\right)
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by fuv, the least common multiple of u,fv.
fv=uf+uv
Use the distributive property to multiply u by f+v.
fv-uf=uv
Subtract uf from both sides.
\left(v-u\right)f=uv
Combine all terms containing f.
\frac{\left(v-u\right)f}{v-u}=\frac{uv}{v-u}
Divide both sides by -u+v.
f=\frac{uv}{v-u}
Dividing by -u+v undoes the multiplication by -u+v.
f=\frac{uv}{v-u}\text{, }f\neq 0
Variable f cannot be equal to 0.
fv=u\left(f+v\right)
Variable u cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by fuv, the least common multiple of u,fv.
fv=uf+uv
Use the distributive property to multiply u by f+v.
uf+uv=fv
Swap sides so that all variable terms are on the left hand side.
\left(f+v\right)u=fv
Combine all terms containing u.
\left(v+f\right)u=fv
The equation is in standard form.
\frac{\left(v+f\right)u}{v+f}=\frac{fv}{v+f}
Divide both sides by f+v.
u=\frac{fv}{v+f}
Dividing by f+v undoes the multiplication by f+v.
u=\frac{fv}{v+f}\text{, }u\neq 0
Variable u cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}