Solve for u
u=24
Share
Copied to clipboard
24+24u\times \frac{1}{8}=4u
Variable u cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 24u, the least common multiple of u,8,6.
24+\frac{24}{8}u=4u
Multiply 24 and \frac{1}{8} to get \frac{24}{8}.
24+3u=4u
Divide 24 by 8 to get 3.
24+3u-4u=0
Subtract 4u from both sides.
24-u=0
Combine 3u and -4u to get -u.
-u=-24
Subtract 24 from both sides. Anything subtracted from zero gives its negation.
u=24
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}