Solve for r
\left\{\begin{matrix}r=-\frac{t\left(x+t\right)}{4t-1}\text{, }&t\neq -x\text{ and }t\neq 0\text{ and }t\neq \frac{1}{4}\\r\neq 0\text{, }&x=-\frac{1}{4}\text{ and }t=\frac{1}{4}\end{matrix}\right.
Solve for t (complex solution)
t=-\frac{\sqrt{x^{2}+8rx+16r^{2}+4r}}{2}-\frac{x}{2}-2r
t=\frac{\sqrt{x^{2}+8rx+16r^{2}+4r}}{2}-\frac{x}{2}-2r\text{, }r\neq 0
Solve for t
t=-\frac{\sqrt{x^{2}+8rx+16r^{2}+4r}}{2}-\frac{x}{2}-2r
t=\frac{\sqrt{x^{2}+8rx+16r^{2}+4r}}{2}-\frac{x}{2}-2r\text{, }r\neq 0\text{ and }\left(r>0\text{ or }x\leq -4r-2\sqrt{-r}\text{ or }x\geq -4r+2\sqrt{-r}\right)
Share
Copied to clipboard
r+rt\left(-4\right)=t\left(t+x\right)
Variable r cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by rt, the least common multiple of t,r.
r+rt\left(-4\right)=t^{2}+tx
Use the distributive property to multiply t by t+x.
\left(1+t\left(-4\right)\right)r=t^{2}+tx
Combine all terms containing r.
\left(1-4t\right)r=tx+t^{2}
The equation is in standard form.
\frac{\left(1-4t\right)r}{1-4t}=\frac{t\left(x+t\right)}{1-4t}
Divide both sides by 1-4t.
r=\frac{t\left(x+t\right)}{1-4t}
Dividing by 1-4t undoes the multiplication by 1-4t.
r=\frac{t\left(x+t\right)}{1-4t}\text{, }r\neq 0
Variable r cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}