Solve for t
t=\frac{\sqrt{2}}{2}+1\approx 1.707106781
t=-\frac{\sqrt{2}}{2}+1\approx 0.292893219
Share
Copied to clipboard
t-1+t=2t\left(t-1\right)
Variable t cannot be equal to any of the values 0,1 since division by zero is not defined. Multiply both sides of the equation by t\left(t-1\right), the least common multiple of t,t-1.
2t-1=2t\left(t-1\right)
Combine t and t to get 2t.
2t-1=2t^{2}-2t
Use the distributive property to multiply 2t by t-1.
2t-1-2t^{2}=-2t
Subtract 2t^{2} from both sides.
2t-1-2t^{2}+2t=0
Add 2t to both sides.
4t-1-2t^{2}=0
Combine 2t and 2t to get 4t.
-2t^{2}+4t-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\left(-1\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 4 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-4±\sqrt{16-4\left(-2\right)\left(-1\right)}}{2\left(-2\right)}
Square 4.
t=\frac{-4±\sqrt{16+8\left(-1\right)}}{2\left(-2\right)}
Multiply -4 times -2.
t=\frac{-4±\sqrt{16-8}}{2\left(-2\right)}
Multiply 8 times -1.
t=\frac{-4±\sqrt{8}}{2\left(-2\right)}
Add 16 to -8.
t=\frac{-4±2\sqrt{2}}{2\left(-2\right)}
Take the square root of 8.
t=\frac{-4±2\sqrt{2}}{-4}
Multiply 2 times -2.
t=\frac{2\sqrt{2}-4}{-4}
Now solve the equation t=\frac{-4±2\sqrt{2}}{-4} when ± is plus. Add -4 to 2\sqrt{2}.
t=-\frac{\sqrt{2}}{2}+1
Divide -4+2\sqrt{2} by -4.
t=\frac{-2\sqrt{2}-4}{-4}
Now solve the equation t=\frac{-4±2\sqrt{2}}{-4} when ± is minus. Subtract 2\sqrt{2} from -4.
t=\frac{\sqrt{2}}{2}+1
Divide -4-2\sqrt{2} by -4.
t=-\frac{\sqrt{2}}{2}+1 t=\frac{\sqrt{2}}{2}+1
The equation is now solved.
t-1+t=2t\left(t-1\right)
Variable t cannot be equal to any of the values 0,1 since division by zero is not defined. Multiply both sides of the equation by t\left(t-1\right), the least common multiple of t,t-1.
2t-1=2t\left(t-1\right)
Combine t and t to get 2t.
2t-1=2t^{2}-2t
Use the distributive property to multiply 2t by t-1.
2t-1-2t^{2}=-2t
Subtract 2t^{2} from both sides.
2t-1-2t^{2}+2t=0
Add 2t to both sides.
4t-1-2t^{2}=0
Combine 2t and 2t to get 4t.
4t-2t^{2}=1
Add 1 to both sides. Anything plus zero gives itself.
-2t^{2}+4t=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2t^{2}+4t}{-2}=\frac{1}{-2}
Divide both sides by -2.
t^{2}+\frac{4}{-2}t=\frac{1}{-2}
Dividing by -2 undoes the multiplication by -2.
t^{2}-2t=\frac{1}{-2}
Divide 4 by -2.
t^{2}-2t=-\frac{1}{2}
Divide 1 by -2.
t^{2}-2t+1=-\frac{1}{2}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-2t+1=\frac{1}{2}
Add -\frac{1}{2} to 1.
\left(t-1\right)^{2}=\frac{1}{2}
Factor t^{2}-2t+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-1\right)^{2}}=\sqrt{\frac{1}{2}}
Take the square root of both sides of the equation.
t-1=\frac{\sqrt{2}}{2} t-1=-\frac{\sqrt{2}}{2}
Simplify.
t=\frac{\sqrt{2}}{2}+1 t=-\frac{\sqrt{2}}{2}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}