Solve for d
d=\frac{rs}{r+s}
r\neq 0\text{ and }s\neq 0\text{ and }r\neq -s
Solve for r
r=-\frac{ds}{d-s}
s\neq 0\text{ and }d\neq 0\text{ and }s\neq d
Share
Copied to clipboard
ds+dr=rs
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by drs, the least common multiple of r,s,d.
\left(s+r\right)d=rs
Combine all terms containing d.
\left(r+s\right)d=rs
The equation is in standard form.
\frac{\left(r+s\right)d}{r+s}=\frac{rs}{r+s}
Divide both sides by r+s.
d=\frac{rs}{r+s}
Dividing by r+s undoes the multiplication by r+s.
d=\frac{rs}{r+s}\text{, }d\neq 0
Variable d cannot be equal to 0.
ds+dr=rs
Variable r cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by drs, the least common multiple of r,s,d.
ds+dr-rs=0
Subtract rs from both sides.
dr-rs=-ds
Subtract ds from both sides. Anything subtracted from zero gives its negation.
\left(d-s\right)r=-ds
Combine all terms containing r.
\frac{\left(d-s\right)r}{d-s}=-\frac{ds}{d-s}
Divide both sides by d-s.
r=-\frac{ds}{d-s}
Dividing by d-s undoes the multiplication by d-s.
r=-\frac{ds}{d-s}\text{, }r\neq 0
Variable r cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}