Solve for q
q = \frac{1023}{20} = 51\frac{3}{20} = 51.15
Quiz
Linear Equation
5 problems similar to:
\frac { 1 } { q } = \frac { 1 } { 33 } - \frac { 1 } { 93 }
Share
Copied to clipboard
1023=1023q\times \frac{1}{33}+1023q\left(-\frac{1}{93}\right)
Variable q cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 1023q, the least common multiple of q,33,93.
1023=\frac{1023}{33}q+1023q\left(-\frac{1}{93}\right)
Multiply 1023 and \frac{1}{33} to get \frac{1023}{33}.
1023=31q+1023q\left(-\frac{1}{93}\right)
Divide 1023 by 33 to get 31.
1023=31q+\frac{1023\left(-1\right)}{93}q
Express 1023\left(-\frac{1}{93}\right) as a single fraction.
1023=31q+\frac{-1023}{93}q
Multiply 1023 and -1 to get -1023.
1023=31q-11q
Divide -1023 by 93 to get -11.
1023=20q
Combine 31q and -11q to get 20q.
20q=1023
Swap sides so that all variable terms are on the left hand side.
q=\frac{1023}{20}
Divide both sides by 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}