Evaluate
\frac{p-q}{p^{2}+pq+q^{2}}
Differentiate w.r.t. p
\frac{2q^{2}+2pq-p^{2}}{\left(p^{2}+pq+q^{2}\right)^{2}}
Share
Copied to clipboard
\frac{1}{p-q}-\frac{3pq}{\left(p-q\right)\left(p^{2}+pq+q^{2}\right)}
Factor p^{3}-q^{3}.
\frac{p^{2}+pq+q^{2}}{\left(p-q\right)\left(p^{2}+pq+q^{2}\right)}-\frac{3pq}{\left(p-q\right)\left(p^{2}+pq+q^{2}\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p-q and \left(p-q\right)\left(p^{2}+pq+q^{2}\right) is \left(p-q\right)\left(p^{2}+pq+q^{2}\right). Multiply \frac{1}{p-q} times \frac{p^{2}+pq+q^{2}}{p^{2}+pq+q^{2}}.
\frac{p^{2}+pq+q^{2}-3pq}{\left(p-q\right)\left(p^{2}+pq+q^{2}\right)}
Since \frac{p^{2}+pq+q^{2}}{\left(p-q\right)\left(p^{2}+pq+q^{2}\right)} and \frac{3pq}{\left(p-q\right)\left(p^{2}+pq+q^{2}\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{p^{2}+q^{2}-2pq}{\left(p-q\right)\left(p^{2}+pq+q^{2}\right)}
Combine like terms in p^{2}+pq+q^{2}-3pq.
\frac{\left(p-q\right)^{2}}{\left(p-q\right)\left(p^{2}+pq+q^{2}\right)}
Factor the expressions that are not already factored in \frac{p^{2}+q^{2}-2pq}{\left(p-q\right)\left(p^{2}+pq+q^{2}\right)}.
\frac{p-q}{p^{2}+pq+q^{2}}
Cancel out p-q in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}