Evaluate
\frac{2p^{3}-7p^{2}+8p+1}{\left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}}
Expand
\frac{2p^{3}-7p^{2}+8p+1}{\left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}}
Share
Copied to clipboard
\frac{\left(p-1\right)^{2}}{\left(p-3\right)\left(p-1\right)^{2}}-\frac{p-3}{\left(p-3\right)\left(p-1\right)^{2}}+\frac{1}{p+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p-3 and \left(p-1\right)^{2} is \left(p-3\right)\left(p-1\right)^{2}. Multiply \frac{1}{p-3} times \frac{\left(p-1\right)^{2}}{\left(p-1\right)^{2}}. Multiply \frac{1}{\left(p-1\right)^{2}} times \frac{p-3}{p-3}.
\frac{\left(p-1\right)^{2}-\left(p-3\right)}{\left(p-3\right)\left(p-1\right)^{2}}+\frac{1}{p+1}
Since \frac{\left(p-1\right)^{2}}{\left(p-3\right)\left(p-1\right)^{2}} and \frac{p-3}{\left(p-3\right)\left(p-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{p^{2}-2p+1-p+3}{\left(p-3\right)\left(p-1\right)^{2}}+\frac{1}{p+1}
Do the multiplications in \left(p-1\right)^{2}-\left(p-3\right).
\frac{p^{2}-3p+4}{\left(p-3\right)\left(p-1\right)^{2}}+\frac{1}{p+1}
Combine like terms in p^{2}-2p+1-p+3.
\frac{\left(p^{2}-3p+4\right)\left(p+1\right)}{\left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}}+\frac{\left(p-3\right)\left(p-1\right)^{2}}{\left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(p-3\right)\left(p-1\right)^{2} and p+1 is \left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}. Multiply \frac{p^{2}-3p+4}{\left(p-3\right)\left(p-1\right)^{2}} times \frac{p+1}{p+1}. Multiply \frac{1}{p+1} times \frac{\left(p-3\right)\left(p-1\right)^{2}}{\left(p-3\right)\left(p-1\right)^{2}}.
\frac{\left(p^{2}-3p+4\right)\left(p+1\right)+\left(p-3\right)\left(p-1\right)^{2}}{\left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}}
Since \frac{\left(p^{2}-3p+4\right)\left(p+1\right)}{\left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}} and \frac{\left(p-3\right)\left(p-1\right)^{2}}{\left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{p^{3}+p^{2}-3p^{2}-3p+4p+4+p^{3}-2p^{2}+p-3p^{2}+6p-3}{\left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}}
Do the multiplications in \left(p^{2}-3p+4\right)\left(p+1\right)+\left(p-3\right)\left(p-1\right)^{2}.
\frac{2p^{3}-7p^{2}+8p+1}{\left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}}
Combine like terms in p^{3}+p^{2}-3p^{2}-3p+4p+4+p^{3}-2p^{2}+p-3p^{2}+6p-3.
\frac{2p^{3}-7p^{2}+8p+1}{p^{4}-4p^{3}+2p^{2}+4p-3}
Expand \left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}.
\frac{\left(p-1\right)^{2}}{\left(p-3\right)\left(p-1\right)^{2}}-\frac{p-3}{\left(p-3\right)\left(p-1\right)^{2}}+\frac{1}{p+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of p-3 and \left(p-1\right)^{2} is \left(p-3\right)\left(p-1\right)^{2}. Multiply \frac{1}{p-3} times \frac{\left(p-1\right)^{2}}{\left(p-1\right)^{2}}. Multiply \frac{1}{\left(p-1\right)^{2}} times \frac{p-3}{p-3}.
\frac{\left(p-1\right)^{2}-\left(p-3\right)}{\left(p-3\right)\left(p-1\right)^{2}}+\frac{1}{p+1}
Since \frac{\left(p-1\right)^{2}}{\left(p-3\right)\left(p-1\right)^{2}} and \frac{p-3}{\left(p-3\right)\left(p-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{p^{2}-2p+1-p+3}{\left(p-3\right)\left(p-1\right)^{2}}+\frac{1}{p+1}
Do the multiplications in \left(p-1\right)^{2}-\left(p-3\right).
\frac{p^{2}-3p+4}{\left(p-3\right)\left(p-1\right)^{2}}+\frac{1}{p+1}
Combine like terms in p^{2}-2p+1-p+3.
\frac{\left(p^{2}-3p+4\right)\left(p+1\right)}{\left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}}+\frac{\left(p-3\right)\left(p-1\right)^{2}}{\left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(p-3\right)\left(p-1\right)^{2} and p+1 is \left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}. Multiply \frac{p^{2}-3p+4}{\left(p-3\right)\left(p-1\right)^{2}} times \frac{p+1}{p+1}. Multiply \frac{1}{p+1} times \frac{\left(p-3\right)\left(p-1\right)^{2}}{\left(p-3\right)\left(p-1\right)^{2}}.
\frac{\left(p^{2}-3p+4\right)\left(p+1\right)+\left(p-3\right)\left(p-1\right)^{2}}{\left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}}
Since \frac{\left(p^{2}-3p+4\right)\left(p+1\right)}{\left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}} and \frac{\left(p-3\right)\left(p-1\right)^{2}}{\left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{p^{3}+p^{2}-3p^{2}-3p+4p+4+p^{3}-2p^{2}+p-3p^{2}+6p-3}{\left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}}
Do the multiplications in \left(p^{2}-3p+4\right)\left(p+1\right)+\left(p-3\right)\left(p-1\right)^{2}.
\frac{2p^{3}-7p^{2}+8p+1}{\left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}}
Combine like terms in p^{3}+p^{2}-3p^{2}-3p+4p+4+p^{3}-2p^{2}+p-3p^{2}+6p-3.
\frac{2p^{3}-7p^{2}+8p+1}{p^{4}-4p^{3}+2p^{2}+4p-3}
Expand \left(p-3\right)\left(p+1\right)\left(p-1\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}