Solve for R
R=\frac{2pq}{p+q}
p\neq 0\text{ and }q\neq 0\text{ and }p\neq -q
Solve for p
p=-\frac{Rq}{R-2q}
q\neq 0\text{ and }R\neq 0\text{ and }q\neq \frac{R}{2}
Share
Copied to clipboard
Rq+Rp=pq\times 2
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by Rpq, the least common multiple of p,q,R.
Rp+Rq=2pq
Reorder the terms.
\left(p+q\right)R=2pq
Combine all terms containing R.
\frac{\left(p+q\right)R}{p+q}=\frac{2pq}{p+q}
Divide both sides by q+p.
R=\frac{2pq}{p+q}
Dividing by q+p undoes the multiplication by q+p.
R=\frac{2pq}{p+q}\text{, }R\neq 0
Variable R cannot be equal to 0.
Rq+Rp=pq\times 2
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by Rpq, the least common multiple of p,q,R.
Rq+Rp-pq\times 2=0
Subtract pq\times 2 from both sides.
Rq+Rp-2pq=0
Multiply -1 and 2 to get -2.
Rp-2pq=-Rq
Subtract Rq from both sides. Anything subtracted from zero gives its negation.
\left(R-2q\right)p=-Rq
Combine all terms containing p.
\frac{\left(R-2q\right)p}{R-2q}=-\frac{Rq}{R-2q}
Divide both sides by R-2q.
p=-\frac{Rq}{R-2q}
Dividing by R-2q undoes the multiplication by R-2q.
p=-\frac{Rq}{R-2q}\text{, }p\neq 0
Variable p cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}