Solve for p
p=-\frac{2\sqrt{2010}q}{-q+2\sqrt{2010}}
q\neq 0\text{ and }q\neq 2\sqrt{2010}
Solve for q
q=-\frac{2\sqrt{2010}p}{-p+2\sqrt{2010}}
p\neq 0\text{ and }p\neq 2\sqrt{2010}
Share
Copied to clipboard
q+p=\frac{1}{4020}pq\times 2010^{\frac{1}{2}}
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by pq, the least common multiple of p,q.
q+p-\frac{1}{4020}pq\times 2010^{\frac{1}{2}}=0
Subtract \frac{1}{4020}pq\times 2010^{\frac{1}{2}} from both sides.
p+q-\frac{1}{4020}\sqrt{2010}pq=0
Reorder the terms.
p-\frac{1}{4020}\sqrt{2010}pq=-q
Subtract q from both sides. Anything subtracted from zero gives its negation.
\left(1-\frac{1}{4020}\sqrt{2010}q\right)p=-q
Combine all terms containing p.
\left(-\frac{\sqrt{2010}q}{4020}+1\right)p=-q
The equation is in standard form.
\frac{\left(-\frac{\sqrt{2010}q}{4020}+1\right)p}{-\frac{\sqrt{2010}q}{4020}+1}=-\frac{q}{-\frac{\sqrt{2010}q}{4020}+1}
Divide both sides by 1-\frac{1}{4020}\sqrt{2010}q.
p=-\frac{q}{-\frac{\sqrt{2010}q}{4020}+1}
Dividing by 1-\frac{1}{4020}\sqrt{2010}q undoes the multiplication by 1-\frac{1}{4020}\sqrt{2010}q.
p=-\frac{4020q}{-\sqrt{2010}q+4020}
Divide -q by 1-\frac{1}{4020}\sqrt{2010}q.
p=-\frac{4020q}{-\sqrt{2010}q+4020}\text{, }p\neq 0
Variable p cannot be equal to 0.
q+p=\frac{1}{4020}pq\times 2010^{\frac{1}{2}}
Variable q cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by pq, the least common multiple of p,q.
q+p-\frac{1}{4020}pq\times 2010^{\frac{1}{2}}=0
Subtract \frac{1}{4020}pq\times 2010^{\frac{1}{2}} from both sides.
p+q-\frac{1}{4020}\sqrt{2010}pq=0
Reorder the terms.
q-\frac{1}{4020}\sqrt{2010}pq=-p
Subtract p from both sides. Anything subtracted from zero gives its negation.
\left(1-\frac{1}{4020}\sqrt{2010}p\right)q=-p
Combine all terms containing q.
\left(-\frac{\sqrt{2010}p}{4020}+1\right)q=-p
The equation is in standard form.
\frac{\left(-\frac{\sqrt{2010}p}{4020}+1\right)q}{-\frac{\sqrt{2010}p}{4020}+1}=-\frac{p}{-\frac{\sqrt{2010}p}{4020}+1}
Divide both sides by 1-\frac{1}{4020}\sqrt{2010}p.
q=-\frac{p}{-\frac{\sqrt{2010}p}{4020}+1}
Dividing by 1-\frac{1}{4020}\sqrt{2010}p undoes the multiplication by 1-\frac{1}{4020}\sqrt{2010}p.
q=-\frac{4020p}{-\sqrt{2010}p+4020}
Divide -p by 1-\frac{1}{4020}\sqrt{2010}p.
q=-\frac{4020p}{-\sqrt{2010}p+4020}\text{, }q\neq 0
Variable q cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}