Solve for n
n=\frac{1}{\sin(x)}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}
Solve for x (complex solution)
x=2\pi n_{1}-i\ln(\frac{-\sqrt{n^{2}-1}+i}{n})\text{, }n_{1}\in \mathrm{Z}
x=2\pi n_{2}-i\ln(\frac{\sqrt{n^{2}-1}+i}{n})\text{, }n_{2}\in \mathrm{Z}\text{, }n\neq 0
Graph
Share
Copied to clipboard
1=n\sin(x)
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n.
n\sin(x)=1
Swap sides so that all variable terms are on the left hand side.
\sin(x)n=1
The equation is in standard form.
\frac{\sin(x)n}{\sin(x)}=\frac{1}{\sin(x)}
Divide both sides by \sin(x).
n=\frac{1}{\sin(x)}
Dividing by \sin(x) undoes the multiplication by \sin(x).
n=\frac{1}{\sin(x)}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}