Evaluate
\frac{2n-3n^{2}+2m+6mn-3m^{2}}{2\left(m^{2}-n^{2}\right)}
Factor
\frac{2n-3n^{2}+2m+6mn-3m^{2}}{2\left(m-n\right)\left(m+n\right)}
Share
Copied to clipboard
\frac{1}{m-n}-\frac{3m-3n}{\left(m+n\right)\times 2}
Divide \frac{1}{m+n} by \frac{2}{3m-3n} by multiplying \frac{1}{m+n} by the reciprocal of \frac{2}{3m-3n}.
\frac{2\left(m+n\right)}{2\left(m+n\right)\left(m-n\right)}-\frac{\left(3m-3n\right)\left(m-n\right)}{2\left(m+n\right)\left(m-n\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-n and \left(m+n\right)\times 2 is 2\left(m+n\right)\left(m-n\right). Multiply \frac{1}{m-n} times \frac{2\left(m+n\right)}{2\left(m+n\right)}. Multiply \frac{3m-3n}{\left(m+n\right)\times 2} times \frac{m-n}{m-n}.
\frac{2\left(m+n\right)-\left(3m-3n\right)\left(m-n\right)}{2\left(m+n\right)\left(m-n\right)}
Since \frac{2\left(m+n\right)}{2\left(m+n\right)\left(m-n\right)} and \frac{\left(3m-3n\right)\left(m-n\right)}{2\left(m+n\right)\left(m-n\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2m+2n-3m^{2}+3mn+3nm-3n^{2}}{2\left(m+n\right)\left(m-n\right)}
Do the multiplications in 2\left(m+n\right)-\left(3m-3n\right)\left(m-n\right).
\frac{2m+2n-3m^{2}-3n^{2}+6mn}{2\left(m+n\right)\left(m-n\right)}
Combine like terms in 2m+2n-3m^{2}+3mn+3nm-3n^{2}.
\frac{2m+2n-3m^{2}-3n^{2}+6mn}{2m^{2}-2n^{2}}
Expand 2\left(m+n\right)\left(m-n\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}