Solve for b
b=\frac{n-m}{mn}
m\neq 0\text{ and }n\neq 0
Solve for m
m=\frac{n}{bn+1}
n\neq 0\text{ and }\left(b=0\text{ or }n\neq -\frac{1}{b}\right)
Share
Copied to clipboard
n-m=bmn
Multiply both sides of the equation by mn, the least common multiple of m,n.
bmn=n-m
Swap sides so that all variable terms are on the left hand side.
mnb=n-m
The equation is in standard form.
\frac{mnb}{mn}=\frac{n-m}{mn}
Divide both sides by mn.
b=\frac{n-m}{mn}
Dividing by mn undoes the multiplication by mn.
b=\frac{1}{m}-\frac{1}{n}
Divide n-m by mn.
n-m=bmn
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by mn, the least common multiple of m,n.
n-m-bmn=0
Subtract bmn from both sides.
-m-bmn=-n
Subtract n from both sides. Anything subtracted from zero gives its negation.
\left(-1-bn\right)m=-n
Combine all terms containing m.
\left(-bn-1\right)m=-n
The equation is in standard form.
\frac{\left(-bn-1\right)m}{-bn-1}=-\frac{n}{-bn-1}
Divide both sides by -1-nb.
m=-\frac{n}{-bn-1}
Dividing by -1-nb undoes the multiplication by -1-nb.
m=\frac{n}{bn+1}
Divide -n by -1-nb.
m=\frac{n}{bn+1}\text{, }m\neq 0
Variable m cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}