Solve for m
m=\frac{\sqrt{7}}{7}\approx 0.377964473
m=-\frac{\sqrt{7}}{7}\approx -0.377964473
Share
Copied to clipboard
1+m^{2}\left(-2\right)=5m^{2}
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by m^{2}.
1+m^{2}\left(-2\right)-5m^{2}=0
Subtract 5m^{2} from both sides.
1-7m^{2}=0
Combine m^{2}\left(-2\right) and -5m^{2} to get -7m^{2}.
-7m^{2}=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
m^{2}=\frac{-1}{-7}
Divide both sides by -7.
m^{2}=\frac{1}{7}
Fraction \frac{-1}{-7} can be simplified to \frac{1}{7} by removing the negative sign from both the numerator and the denominator.
m=\frac{\sqrt{7}}{7} m=-\frac{\sqrt{7}}{7}
Take the square root of both sides of the equation.
1+m^{2}\left(-2\right)=5m^{2}
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by m^{2}.
1+m^{2}\left(-2\right)-5m^{2}=0
Subtract 5m^{2} from both sides.
1-7m^{2}=0
Combine m^{2}\left(-2\right) and -5m^{2} to get -7m^{2}.
-7m^{2}+1=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
m=\frac{0±\sqrt{0^{2}-4\left(-7\right)}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 0 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\left(-7\right)}}{2\left(-7\right)}
Square 0.
m=\frac{0±\sqrt{28}}{2\left(-7\right)}
Multiply -4 times -7.
m=\frac{0±2\sqrt{7}}{2\left(-7\right)}
Take the square root of 28.
m=\frac{0±2\sqrt{7}}{-14}
Multiply 2 times -7.
m=-\frac{\sqrt{7}}{7}
Now solve the equation m=\frac{0±2\sqrt{7}}{-14} when ± is plus.
m=\frac{\sqrt{7}}{7}
Now solve the equation m=\frac{0±2\sqrt{7}}{-14} when ± is minus.
m=-\frac{\sqrt{7}}{7} m=\frac{\sqrt{7}}{7}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}