Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. k
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{k-r}+\frac{4r}{\left(r+k\right)\left(-r+k\right)}+\frac{2}{k+r}
Factor k^{2}-r^{2}.
\frac{r+k}{\left(r+k\right)\left(-r+k\right)}+\frac{4r}{\left(r+k\right)\left(-r+k\right)}+\frac{2}{k+r}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k-r and \left(r+k\right)\left(-r+k\right) is \left(r+k\right)\left(-r+k\right). Multiply \frac{1}{k-r} times \frac{r+k}{r+k}.
\frac{r+k+4r}{\left(r+k\right)\left(-r+k\right)}+\frac{2}{k+r}
Since \frac{r+k}{\left(r+k\right)\left(-r+k\right)} and \frac{4r}{\left(r+k\right)\left(-r+k\right)} have the same denominator, add them by adding their numerators.
\frac{5r+k}{\left(r+k\right)\left(-r+k\right)}+\frac{2}{k+r}
Combine like terms in r+k+4r.
\frac{5r+k}{\left(r+k\right)\left(-r+k\right)}+\frac{2\left(-r+k\right)}{\left(r+k\right)\left(-r+k\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(r+k\right)\left(-r+k\right) and k+r is \left(r+k\right)\left(-r+k\right). Multiply \frac{2}{k+r} times \frac{-r+k}{-r+k}.
\frac{5r+k+2\left(-r+k\right)}{\left(r+k\right)\left(-r+k\right)}
Since \frac{5r+k}{\left(r+k\right)\left(-r+k\right)} and \frac{2\left(-r+k\right)}{\left(r+k\right)\left(-r+k\right)} have the same denominator, add them by adding their numerators.
\frac{5r+k-2r+2k}{\left(r+k\right)\left(-r+k\right)}
Do the multiplications in 5r+k+2\left(-r+k\right).
\frac{3r+3k}{\left(r+k\right)\left(-r+k\right)}
Combine like terms in 5r+k-2r+2k.
\frac{3\left(r+k\right)}{\left(r+k\right)\left(-r+k\right)}
Factor the expressions that are not already factored in \frac{3r+3k}{\left(r+k\right)\left(-r+k\right)}.
\frac{3}{-r+k}
Cancel out r+k in both numerator and denominator.