Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{i}{-1}-\frac{3i}{1-i}
Multiply both numerator and denominator of \frac{1}{i} by imaginary unit i.
-i-\frac{3i}{1-i}
Divide i by -1 to get -i.
-i-\frac{3i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator of \frac{3i}{1-i} by the complex conjugate of the denominator, 1+i.
-i-\frac{-3+3i}{2}
Do the multiplications in \frac{3i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
-i+\left(\frac{3}{2}-\frac{3}{2}i\right)
Divide -3+3i by 2 to get -\frac{3}{2}+\frac{3}{2}i.
\frac{3}{2}-\frac{5}{2}i
Add -i and \frac{3}{2}-\frac{3}{2}i to get \frac{3}{2}-\frac{5}{2}i.
Re(\frac{i}{-1}-\frac{3i}{1-i})
Multiply both numerator and denominator of \frac{1}{i} by imaginary unit i.
Re(-i-\frac{3i}{1-i})
Divide i by -1 to get -i.
Re(-i-\frac{3i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
Multiply both numerator and denominator of \frac{3i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(-i-\frac{-3+3i}{2})
Do the multiplications in \frac{3i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(-i+\left(\frac{3}{2}-\frac{3}{2}i\right))
Divide -3+3i by 2 to get -\frac{3}{2}+\frac{3}{2}i.
Re(\frac{3}{2}-\frac{5}{2}i)
Add -i and \frac{3}{2}-\frac{3}{2}i to get \frac{3}{2}-\frac{5}{2}i.
\frac{3}{2}
The real part of \frac{3}{2}-\frac{5}{2}i is \frac{3}{2}.