Evaluate
\frac{3}{2}-\frac{5}{2}i=1.5-2.5i
Real Part
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\frac{i}{-1}-\frac{3i}{1-i}
Multiply both numerator and denominator of \frac{1}{i} by imaginary unit i.
-i-\frac{3i}{1-i}
Divide i by -1 to get -i.
-i-\frac{3i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator of \frac{3i}{1-i} by the complex conjugate of the denominator, 1+i.
-i-\frac{-3+3i}{2}
Do the multiplications in \frac{3i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
-i+\left(\frac{3}{2}-\frac{3}{2}i\right)
Divide -3+3i by 2 to get -\frac{3}{2}+\frac{3}{2}i.
\frac{3}{2}-\frac{5}{2}i
Add -i and \frac{3}{2}-\frac{3}{2}i to get \frac{3}{2}-\frac{5}{2}i.
Re(\frac{i}{-1}-\frac{3i}{1-i})
Multiply both numerator and denominator of \frac{1}{i} by imaginary unit i.
Re(-i-\frac{3i}{1-i})
Divide i by -1 to get -i.
Re(-i-\frac{3i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
Multiply both numerator and denominator of \frac{3i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(-i-\frac{-3+3i}{2})
Do the multiplications in \frac{3i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(-i+\left(\frac{3}{2}-\frac{3}{2}i\right))
Divide -3+3i by 2 to get -\frac{3}{2}+\frac{3}{2}i.
Re(\frac{3}{2}-\frac{5}{2}i)
Add -i and \frac{3}{2}-\frac{3}{2}i to get \frac{3}{2}-\frac{5}{2}i.
\frac{3}{2}
The real part of \frac{3}{2}-\frac{5}{2}i is \frac{3}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}