Evaluate
-\frac{1}{x\left(x+h\right)}
Expand
-\frac{1}{x\left(x+h\right)}
Graph
Share
Copied to clipboard
\frac{1}{h}\left(\frac{x}{x\left(x+h\right)}-\frac{x+h}{x\left(x+h\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+h and x is x\left(x+h\right). Multiply \frac{1}{x+h} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{x+h}{x+h}.
\frac{1}{h}\times \frac{x-\left(x+h\right)}{x\left(x+h\right)}
Since \frac{x}{x\left(x+h\right)} and \frac{x+h}{x\left(x+h\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{h}\times \frac{x-x-h}{x\left(x+h\right)}
Do the multiplications in x-\left(x+h\right).
\frac{1}{h}\times \frac{-h}{x\left(x+h\right)}
Combine like terms in x-x-h.
\frac{-h}{hx\left(x+h\right)}
Multiply \frac{1}{h} times \frac{-h}{x\left(x+h\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{x\left(x+h\right)}
Cancel out h in both numerator and denominator.
\frac{-1}{x^{2}+xh}
Use the distributive property to multiply x by x+h.
\frac{1}{h}\left(\frac{x}{x\left(x+h\right)}-\frac{x+h}{x\left(x+h\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+h and x is x\left(x+h\right). Multiply \frac{1}{x+h} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{x+h}{x+h}.
\frac{1}{h}\times \frac{x-\left(x+h\right)}{x\left(x+h\right)}
Since \frac{x}{x\left(x+h\right)} and \frac{x+h}{x\left(x+h\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{h}\times \frac{x-x-h}{x\left(x+h\right)}
Do the multiplications in x-\left(x+h\right).
\frac{1}{h}\times \frac{-h}{x\left(x+h\right)}
Combine like terms in x-x-h.
\frac{-h}{hx\left(x+h\right)}
Multiply \frac{1}{h} times \frac{-h}{x\left(x+h\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{x\left(x+h\right)}
Cancel out h in both numerator and denominator.
\frac{-1}{x^{2}+xh}
Use the distributive property to multiply x by x+h.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}