Solve for f
f = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
Quiz
Linear Equation
5 problems similar to:
\frac { 1 } { f } = \frac { - 1 } { 4 } - \frac { 1 } { 2 }
Share
Copied to clipboard
4=f\left(-1\right)+4f\left(-\frac{1}{2}\right)
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4f, the least common multiple of f,4,2.
4=f\left(-1\right)+\frac{4\left(-1\right)}{2}f
Express 4\left(-\frac{1}{2}\right) as a single fraction.
4=f\left(-1\right)+\frac{-4}{2}f
Multiply 4 and -1 to get -4.
4=f\left(-1\right)-2f
Divide -4 by 2 to get -2.
4=-3f
Combine f\left(-1\right) and -2f to get -3f.
-3f=4
Swap sides so that all variable terms are on the left hand side.
f=\frac{4}{-3}
Divide both sides by -3.
f=-\frac{4}{3}
Fraction \frac{4}{-3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}