Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{d+8}-\frac{1-d}{d^{2}-8d+64}-\frac{\left(d-1\right)\left(d+8\right)}{\left(d+8\right)\left(d^{2}-8d+64\right)}
Factor the expressions that are not already factored in \frac{d^{2}+7d-8}{d^{3}+512}.
\frac{1}{d+8}-\frac{1-d}{d^{2}-8d+64}-\frac{d-1}{d^{2}-8d+64}
Cancel out d+8 in both numerator and denominator.
\frac{d^{2}-8d+64}{\left(d+8\right)\left(d^{2}-8d+64\right)}-\frac{\left(1-d\right)\left(d+8\right)}{\left(d+8\right)\left(d^{2}-8d+64\right)}-\frac{d-1}{d^{2}-8d+64}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of d+8 and d^{2}-8d+64 is \left(d+8\right)\left(d^{2}-8d+64\right). Multiply \frac{1}{d+8} times \frac{d^{2}-8d+64}{d^{2}-8d+64}. Multiply \frac{1-d}{d^{2}-8d+64} times \frac{d+8}{d+8}.
\frac{d^{2}-8d+64-\left(1-d\right)\left(d+8\right)}{\left(d+8\right)\left(d^{2}-8d+64\right)}-\frac{d-1}{d^{2}-8d+64}
Since \frac{d^{2}-8d+64}{\left(d+8\right)\left(d^{2}-8d+64\right)} and \frac{\left(1-d\right)\left(d+8\right)}{\left(d+8\right)\left(d^{2}-8d+64\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{d^{2}-8d+64-d-8+d^{2}+8d}{\left(d+8\right)\left(d^{2}-8d+64\right)}-\frac{d-1}{d^{2}-8d+64}
Do the multiplications in d^{2}-8d+64-\left(1-d\right)\left(d+8\right).
\frac{2d^{2}-d+56}{\left(d+8\right)\left(d^{2}-8d+64\right)}-\frac{d-1}{d^{2}-8d+64}
Combine like terms in d^{2}-8d+64-d-8+d^{2}+8d.
\frac{2d^{2}-d+56}{\left(d+8\right)\left(d^{2}-8d+64\right)}-\frac{\left(d-1\right)\left(d+8\right)}{\left(d+8\right)\left(d^{2}-8d+64\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(d+8\right)\left(d^{2}-8d+64\right) and d^{2}-8d+64 is \left(d+8\right)\left(d^{2}-8d+64\right). Multiply \frac{d-1}{d^{2}-8d+64} times \frac{d+8}{d+8}.
\frac{2d^{2}-d+56-\left(d-1\right)\left(d+8\right)}{\left(d+8\right)\left(d^{2}-8d+64\right)}
Since \frac{2d^{2}-d+56}{\left(d+8\right)\left(d^{2}-8d+64\right)} and \frac{\left(d-1\right)\left(d+8\right)}{\left(d+8\right)\left(d^{2}-8d+64\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2d^{2}-d+56-d^{2}-8d+d+8}{\left(d+8\right)\left(d^{2}-8d+64\right)}
Do the multiplications in 2d^{2}-d+56-\left(d-1\right)\left(d+8\right).
\frac{d^{2}-8d+64}{\left(d+8\right)\left(d^{2}-8d+64\right)}
Combine like terms in 2d^{2}-d+56-d^{2}-8d+d+8.
\frac{1}{d+8}
Cancel out d^{2}-8d+64 in both numerator and denominator.
\frac{1}{d+8}-\frac{1-d}{d^{2}-8d+64}-\frac{\left(d-1\right)\left(d+8\right)}{\left(d+8\right)\left(d^{2}-8d+64\right)}
Factor the expressions that are not already factored in \frac{d^{2}+7d-8}{d^{3}+512}.
\frac{1}{d+8}-\frac{1-d}{d^{2}-8d+64}-\frac{d-1}{d^{2}-8d+64}
Cancel out d+8 in both numerator and denominator.
\frac{d^{2}-8d+64}{\left(d+8\right)\left(d^{2}-8d+64\right)}-\frac{\left(1-d\right)\left(d+8\right)}{\left(d+8\right)\left(d^{2}-8d+64\right)}-\frac{d-1}{d^{2}-8d+64}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of d+8 and d^{2}-8d+64 is \left(d+8\right)\left(d^{2}-8d+64\right). Multiply \frac{1}{d+8} times \frac{d^{2}-8d+64}{d^{2}-8d+64}. Multiply \frac{1-d}{d^{2}-8d+64} times \frac{d+8}{d+8}.
\frac{d^{2}-8d+64-\left(1-d\right)\left(d+8\right)}{\left(d+8\right)\left(d^{2}-8d+64\right)}-\frac{d-1}{d^{2}-8d+64}
Since \frac{d^{2}-8d+64}{\left(d+8\right)\left(d^{2}-8d+64\right)} and \frac{\left(1-d\right)\left(d+8\right)}{\left(d+8\right)\left(d^{2}-8d+64\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{d^{2}-8d+64-d-8+d^{2}+8d}{\left(d+8\right)\left(d^{2}-8d+64\right)}-\frac{d-1}{d^{2}-8d+64}
Do the multiplications in d^{2}-8d+64-\left(1-d\right)\left(d+8\right).
\frac{2d^{2}-d+56}{\left(d+8\right)\left(d^{2}-8d+64\right)}-\frac{d-1}{d^{2}-8d+64}
Combine like terms in d^{2}-8d+64-d-8+d^{2}+8d.
\frac{2d^{2}-d+56}{\left(d+8\right)\left(d^{2}-8d+64\right)}-\frac{\left(d-1\right)\left(d+8\right)}{\left(d+8\right)\left(d^{2}-8d+64\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(d+8\right)\left(d^{2}-8d+64\right) and d^{2}-8d+64 is \left(d+8\right)\left(d^{2}-8d+64\right). Multiply \frac{d-1}{d^{2}-8d+64} times \frac{d+8}{d+8}.
\frac{2d^{2}-d+56-\left(d-1\right)\left(d+8\right)}{\left(d+8\right)\left(d^{2}-8d+64\right)}
Since \frac{2d^{2}-d+56}{\left(d+8\right)\left(d^{2}-8d+64\right)} and \frac{\left(d-1\right)\left(d+8\right)}{\left(d+8\right)\left(d^{2}-8d+64\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2d^{2}-d+56-d^{2}-8d+d+8}{\left(d+8\right)\left(d^{2}-8d+64\right)}
Do the multiplications in 2d^{2}-d+56-\left(d-1\right)\left(d+8\right).
\frac{d^{2}-8d+64}{\left(d+8\right)\left(d^{2}-8d+64\right)}
Combine like terms in 2d^{2}-d+56-d^{2}-8d+d+8.
\frac{1}{d+8}
Cancel out d^{2}-8d+64 in both numerator and denominator.