Solve for c_T
c_{T}=\frac{36}{49}\approx 0.734693878
Share
Copied to clipboard
36=36c_{T}\times \frac{1}{2}+36c_{T}\times \frac{1}{9}+36c_{T}\times \frac{1}{2}+36c_{T}\times \frac{1}{6}+36c_{T}\times \frac{1}{12}
Variable c_{T} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 36c_{T}, the least common multiple of c_{T},2,9,6,12.
36=\frac{36}{2}c_{T}+36c_{T}\times \frac{1}{9}+36c_{T}\times \frac{1}{2}+36c_{T}\times \frac{1}{6}+36c_{T}\times \frac{1}{12}
Multiply 36 and \frac{1}{2} to get \frac{36}{2}.
36=18c_{T}+36c_{T}\times \frac{1}{9}+36c_{T}\times \frac{1}{2}+36c_{T}\times \frac{1}{6}+36c_{T}\times \frac{1}{12}
Divide 36 by 2 to get 18.
36=18c_{T}+\frac{36}{9}c_{T}+36c_{T}\times \frac{1}{2}+36c_{T}\times \frac{1}{6}+36c_{T}\times \frac{1}{12}
Multiply 36 and \frac{1}{9} to get \frac{36}{9}.
36=18c_{T}+4c_{T}+36c_{T}\times \frac{1}{2}+36c_{T}\times \frac{1}{6}+36c_{T}\times \frac{1}{12}
Divide 36 by 9 to get 4.
36=22c_{T}+36c_{T}\times \frac{1}{2}+36c_{T}\times \frac{1}{6}+36c_{T}\times \frac{1}{12}
Combine 18c_{T} and 4c_{T} to get 22c_{T}.
36=22c_{T}+\frac{36}{2}c_{T}+36c_{T}\times \frac{1}{6}+36c_{T}\times \frac{1}{12}
Multiply 36 and \frac{1}{2} to get \frac{36}{2}.
36=22c_{T}+18c_{T}+36c_{T}\times \frac{1}{6}+36c_{T}\times \frac{1}{12}
Divide 36 by 2 to get 18.
36=40c_{T}+36c_{T}\times \frac{1}{6}+36c_{T}\times \frac{1}{12}
Combine 22c_{T} and 18c_{T} to get 40c_{T}.
36=40c_{T}+\frac{36}{6}c_{T}+36c_{T}\times \frac{1}{12}
Multiply 36 and \frac{1}{6} to get \frac{36}{6}.
36=40c_{T}+6c_{T}+36c_{T}\times \frac{1}{12}
Divide 36 by 6 to get 6.
36=46c_{T}+36c_{T}\times \frac{1}{12}
Combine 40c_{T} and 6c_{T} to get 46c_{T}.
36=46c_{T}+\frac{36}{12}c_{T}
Multiply 36 and \frac{1}{12} to get \frac{36}{12}.
36=46c_{T}+3c_{T}
Divide 36 by 12 to get 3.
36=49c_{T}
Combine 46c_{T} and 3c_{T} to get 49c_{T}.
49c_{T}=36
Swap sides so that all variable terms are on the left hand side.
c_{T}=\frac{36}{49}
Divide both sides by 49.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}